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Deep Hybrid Order-Independent Transparency

Grigoris Tsopouridis · Ioannis Fudos · Andreas-Alexandros Vasilakis

Abstract Correctly compositing transparent fragments

is an important and long-standing open problem in

real-time computer graphics. Multifragment rendering

is considered a key solution to providing high-quality

order-independent transparency at interactive frame rates.

To achieve that, practical implementations severely con-

strain the overall memory budget by adopting bounded

fragment configurations such as the k-buffer. Relying on

an iterative trial-and-error procedure, however, where

the value of k is manually configured per case scenario,

can inevitably result in bad memory utilization and

view-dependent artifacts. To this end, we introduce a

novel intelligent k-buffer approach that performs a non-

uniform per pixel fragment allocation guided by a deep

learning prediction mechanism. A hybrid scheme is fur-

ther employed to facilitate the approximate blending

of non-significant (remaining) fragments and thus con-

tribute to a better overall final color estimation. An

experimental evaluation substantiates that our method

outperforms previous approaches when evaluating trans-

parency in various high depth-complexity scenes.
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1 Introduction

Multifragment rendering (MFR) has become a key solu-

tion to facilitate real-time support of complex effects [22]

ranging from order-independent transparency (OIT) [9]

to global illumination [18]. To achieve real-time perfor-

mance several MFR algorithms have been used that

maintain a memory space per pixel, where information

regarding all fragments for this pixel is stored. This

rendering pipeline is known as A-buffer [4] and can

be implemented either by allocating a predetermined

memory portion per pixel that can accommodate all

fragments [7] which is fast but memory demanding, or

by creating per pixel linked-lists [25,19], which is much

slower but needs exactly the required memory space.

In practical scenarios, only a small portion of the

fragment pool is enough for achieving plausible sim-

ulation effects, such as OIT rendering. The k -buffer

[2,20] can objectively be considered as the most pre-

ferred framework using a k -subset selection of all gener-

ated fragments, especially when low graphics memory

requirements are of the utmost importance. Unfortu-

nately, the standard practice of using a fixed value for

k across the entire image can lead to various issues [23].

Firstly, setting k to a small number, can result in view-

dependent artifacts as more than k fragments might be

required for some pixels at a particular viewing configu-

ration to correctly simulate the desired effect. Secondly,

employing a large value of k can result in bad utilization

of the allocated space as unused storage is unnecessary

allocated for pixels that contain less than k fragments.

In this paper we introduce the first machine learning

MFR approach to dynamically adjust and unevenly dis-

tribute k values across the image according to the avail-

able storage space. Our method utilizes a deep learning

mechanism that aims at optimizing the fragment dis-

tribution without exceeding the allocated storage, so
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Fig. 1 Our deep multifragment rendering improves rendering quality (as illustrated using FLIP tool [1]) of transparent
primitives in high depth-complexity scenes (left) when compared to modern memory-bounded k-buffer approaches (right). Our
method distributes wisely a predefined memory budget using a novel neural network predictor that assigns fragment space to
pixels in a non-uniform manner (middle).

as to achieve an OIT rendering effect that is as close

as possible to the optimal image output (produced by

any A-buffer implementation [22]). The per-pixel k dis-

tribution is computed by a fast neural network, that is

then passed on to the rendering process before the ac-

tual fragment data generation. A hybrid rendering ap-

proach [8] is applied to perform accurate compositing

of the k captured fragments per pixel while applying

a quick approximation for the remaining, if any, dis-

carded ones. After training on a sufficient number of

high depth-complexity scenes, we show that our net-

work has the ability to effectively approximate OIT for

different scene configurations that it has not encoun-

tered during training. Although we have used hybrid

transparency as our testing scenario, we can apply the

same methodology for simulating any OIT variant tech-

niques or for capturing rendering effects that can ben-

efit from using relatively shallow k -buffers [22].

The structure of the rest of this paper is as follows.

Section 2 provides a survey of related work. Section 3

describes the core method that is built around a deep

learning method for predicting the optimal allocation of

fragments per pixel based on hybrid transparency. Sec-

tion 4 provides a thorough comparative experimental

evaluation of our method as compared to previous com-

petent k -buffer techniques that have been presented in

the literature. Finally, Section 5 offers conclusions and

future research directions.

2 Related Work

Multifragment Rendering. A rapidly increasing num-

ber of applications rely on MFR solutions to develop

visually convincing graphics applications with dynamic

image plane

viewing frustum

k=4

Fig. 2 Hybrid transparency [8] combines an accurate com-
position of the “core” fragment samples captured in a k-buffer
(yellow color), with a quick approximation for the remaining
“tail” ones (red color).

content [22]. The main advantage of these approaches

is that they encompass additional rasterized geometry,

by retaining more information from the fragment sam-

pling domain, thus augmenting the primary visibility

determination stage - commonly performed via the Z-

buffer [5]. Historically, the most prominent example of a

method that went beyond the single layer of rasterized

geometry was A-buffer by Carpenter [4]; a software im-

plementation of multiple per-pixel linked lists for trans-

parency and antialiasing purposes. Despite the popu-

larity of the modern, GPU-implemented, A-buffer [25]

and its variants [7,19], this class of methods suffers from

memory overflows as a result of the unpredictable mem-

ory space needed to store all generated fragments mak-

ing it not appropriate for interactive applications with

low memory demands.

k-buffer - Limited per pixel number of fragments. k -

buffer can be considered as the most preferred frame-

work for optimal fragment subset selection, especially

when low graphics memory requirements are of the ut-
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most importance [2,20]. It reduces the computation cost

by capturing the best k-subset of all generated frag-

ments, usually the closest to the camera (Fig. 2). The

idea is to bound fragment storage (per pixel) to allo-

cate less memory than the A-buffer variants by sacri-

ficing quality to a small extent. k -buffer assumes a pre-

assigned, and global, fixed value of k fragments across

the entire image. From a development and production

standpoint, the process of finding the optimal value of

k that correctly captures the user intent, while keeping

memory budget low, can become very challenging. To

cope with this issue, the dynamic k -buffer [21] automat-

ically determines the value of k by performing a depth

complexity histogram analysis. However, it is clear that

using a single value for k for all pixels results in bad uti-

lization of the allocated space. To this end, Vasilakis et

al. altered the classic k -buffer construction procedure

from a fixed-k to a variable-k per-pixel fragment al-

location strategy [23]. Given a fixed memory budget,

the idea is to dynamically distribute more fragments in

pixels that contribute more to the visual result accord-

ing to importance-driven metrics. Our work advances

this line of research by performing a non-uniform per-

pixel fragment allocation guided by a machine learning

prediction mechanism that approximates the optimal

fragment distribution under a fixed memory budget.

Despite the recent trends of neural rendering [16], and

its application to enhance screen-space global illumina-

tion [11,17,26], the use of machine learning for predict-

ing multifragment storage has not been addressed so

far.

Order-Independent Transparency. MFR is actu-

ally the tool that spurred research on order-independent

transparency [9,24]. Transparent surfaces require mul-

tiple per-pixel fragments to be captured in sorted back-

to-front order and then evaluated using a compositing

operator [12]. To avoid GPU resource exhaustion from

an A-buffer, a k -buffer scheme is commonly applied

to capturing only the most important information and

compactly representing the resulting transmittance as a

function of depth [14,8,15]. Without loss of generality,

we train our artificial network using the hybrid trans-

parency approach [8] where the transmittance function

is accurately computed for the closest to the viewer

fragments and approximated with a fast weighted av-

erage blending [3] for the remaining ones.

3 Deep k-buffer Method

In this section, we analytically describe the two phases

of our deep hybrid OIT technique; i) the training phase,

and ii) the runtime phase. We introduce a “one net-

work for one effect” approach for training the network

to learn the per-pixel relation between features and the

number of fragments necessary for a particular render-

ing effect, specifically the Hybrid Transparency method [8].

Without loss of generality, we can apply the same train-

ing methodology with minor feature changes for sim-

ulating rendering effects, even outsize the OIT spec-

trum [24], that can benefit from using relatively shallow

k -buffers [22].

For the training phase (Sec. 3.1), we first explain

how we acquire the necessary screen-space feature data

for the supervised learning process (Sec. 3.1.1), along

with a heuristic process that generates the optimal k -

buffer for each case which we use as our desired ground

truth output (Sec. 3.1.2). We then describe the architec-

ture of the neural network (Sec. 3.1.3) used for learning

how to distribute memory along the image space. Dur-

ing the runtime phase (Sec. 3.2), the network generates

k per-pixel values for new scene configurations at in-

teractive rates, with a similar quality to the optimal

k -buffer used for training, and using only image space

buffer information (Sec. 3.2.2). Finally, we discuss how

the predictor is practically integrated into a modern

MFR pipeline (Sec. 3.2.1) that simulates hybrid trans-

parency (Sec. 3.3).

3.1 Training Phase

3.1.1 Data Acquisition

To train the neural network, we created a dataset that

contains pairs of per-pixel inputs and the target pixel

importance. To create the dataset, input features from

8 fully-transparent scenes with varying depth complex-

ity (10-30 fragments), each containing a single 3D ob-

ject, are exported from our renderer. Each scene has

eight different camera views, which were manually set

and differ in terms of position and direction, and are

shared amongst all scenes. Finally, each camera view

has five different memory allocation variations ranging

from having the bare minimum of one fragment per

pixel to having all scene fragments, to include all pos-

sible user-defined memory budget setups. The neural

network expects the following 12 float features as in-

put:

– Per-pixel p

– Number of pixel fragments divided by the total

number of fragments in the specific scene/view,
n(p)∑
p n(p) .
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– Nearest fragment depth, dn(p).

– Farthest fragment depth, df (p).

– Diffuse color of the nearest fragment, Cn(p).

– Average diffuse color of pixel fragments, Cavg(p).

– Image-based

– Number of allocated fragments (based on the

available memory budget M) divided by all gen-

erated fragments, F (M)∑
p n(p) .

– Nearest fragment depth, dn = minp dn(p).

– Farthest fragment depth, df = maxp df (p).

We have tried out several other features as well, but

they were rejected because they had no correlation with

the target optimal distribution. In this paper, we focus

on predicting correctly the optimal distribution of Sec-

tion 3.1.2. Therefore, geometry information (e.g. nor-

mal vector) does not help in predicting the optimal dis-

tribution. However, one could seek to predict the opti-

mal A-buffer color per pixel. This is a complex problem

that requires further investigation.

As the desired output, we compute the optimal k -

buffer distribution under fixed memory budget for each

scene/view variation (Sec. 3.1.2) using Hybrid Trans-

parency (Sec. 3.3) and we divide it by the total number

of available fragment spots to derive the desired per-

pixel importance. We perform uniform random sam-

pling and keep only 20% of the exported input-output

pairs for the training process in an effort to avoid over-

fitting. All input-output pairs in the dataset were ex-

ported using a resolution of 1430x960 pixels but any

other resolution can be used without re-training, as pre-

diction works on a per-pixel basis.

3.1.2 Optimal Fragment Distribution

We introduce a heuristic method for deriving the opti-

mal fragment distribution under fixed overall memory

budget for the case of Hybrid Transparency [8]. The op-

timal fragment construction, called optimal k-buffer in

the context of this paper, is the distribution of a fixed

number of fragments (based on the given memory re-

sources) to pixels that minimizes the mean square error

of hybrid transparency as compared to the correct re-

sult derived from an unbounded memory MFR method

for the specific view/scene that takes into account all

fragments [25,19].

Let P be the set of pixels in an image of resolution

w×h derived from a scene under a specific view. There-

fore, |P | = w h. For each pixel p, we assign a depth-

sorted list of all fragments available for this pixel with

unbounded memory. We denote this list by FL(p) =

[f1, . . . , fn(p)] and its length as |FL(p)| = n(p).

Let Ku : P → N be the mapping that represents the

number of fragments per pixel with unbounded memory

for a specific scene and view. Note that Ku(p) = n(p).

Let KM : P → N be the mapping that represents the

distribution of fragments to pixels under a fixed mem-

ory budget M . Note that when KM (p) < Ku(p) this

means that under the fixed memory budget we shall

compute for this pixel the hybrid OIT by considering

the first KM (p) elements of FL(p) as core and the rest

of the FL(p) elements as tail (Sec. 3.3). For the two

mappings the following hold: Ku(p) = 0 ⇒ KM (p) = 0

and Ku(p) > 0 ⇒ KM (p) > 0. Then
∑

p∈P KM (p) =

F (M), where F (M) is the number of fragments avail-

able under a memory budget M . F (M) is computed by

the following formula:

F (M) =

⌊
M − |P |Sp − Si

Sf

⌋
(1)

where Sp and Si is the total memory required by our

deep OIT method for each pixel and for storing infor-

mation about the entire image respectively (Sec. 3.2.1).

Finally, Sf is the memory required for storing informa-

tion for each fragment. For 32-bit GPUs this is 8 bytes

(two single precision floats).

The optimal distribution of fragments KM is the

distribution that minimizes the sum of differences of

two factors:

1. the color C(p,KM ) of each pixel p computed us-

ing hybrid OIT with fragment distribution KM on

FL(p) by considering the first KM (p) elements of

FL(p) as core and the rest as tail (more details in

Sec. 3.3).

2. the color Cu(p) of each pixel p using OIT on all

generated fragments (unbounded memory budget)

of FL(p).

Therefore the objective function is computed using this

formula:

∑
p∈P

MSE(p,KM ) (2)

where MSE(p,KM ) = (Cu(p)− C(p,KM ))2.

The optimal distribution of fragments KM is com-

puted by a backward greedy algorithm that starts with

the exact unbounded OIT scheme and removes at each

step the farthest from the viewer fragment that causes

the minimum increase in Equation 2 (Fig. 3). To this

end, we present Algorithm 1 that uses a min-heap ini-

tialized by the increase in error caused by removing the

largest depth fragments of all pixels. Then the fragment

from the top of the heap is removed from the scheme

and the fragment that has the next largest depth for

that pixel is inserted in the heap (except if this is the
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Remove Top Insert to Heap

…

Optimal k-buffer

Fig. 3 Optimal k-buffer construction: Starting from an A-
buffer construction [19] with iteratively remove (move from
core to tail [8]) the farthest fragment from the viewer that
contribute less to the final hybrid OIT result.

last remaining fragment for this pixel). The algorithm

stops when we have reached the overall number of avail-

able fragment spots F (M). Please note that the compu-

tation of the optimal fragment distribution is conducted

offline for training the neural network that predicts the

pixel importance (Sec. 3.1.1).

Lemma 1 Alg. 1 derives the optimal fragment distri-

bution KM .

Proof Since the list of fragments for each pixel is inde-

pendent from all other pixels, and the fragment distri-

bution determines how many of the first depth-sorted

fragments we will use from each list as core fragments,

it is straight forward to prove the correctness of the

algorithm by induction on the number of removed frag-

ments.

Step 1: When removing the first fragment we choose to

remove a fragment from a pixel that has the mini-

mal error MSE(p,KM ) among all candidate pixels

(with two or more fragments) when KM (p) is de-

creased by 1.

Step 2: If we have removed so far n fragments from

various pixels and this is the optimal configuration,

then at the next step we should remove a fragment

from a pixel that has the minimal MSE(p,KM )

among all pixels when KM (p) is decreased by 1. The

element at the top of the list has the minimal such

value among all eligible candidates (i.e. with two or

more core fragments).

3.1.3 Network Architecture & Training

We have selected a simple fully connected multilayer

perceptron (Fig. 4) to predict an unnormalized per-

pixel importance value that helps us compute the fi-

nal per-pixel k value allocation. The neural network is

composed of an input, an output, and two hidden lay-

ers. The two hidden layers are composed of 128 and 64

neurons respectively and use ReLU as their activation

Input: All fragments of a specific (scene, view)
instance for resolution w × h, P , M , Ku, Cu,
C, F , FL

1 KM = Ku;
2 fM = F (M), via Eq. 1
3 fc =

∑
p∈P Ku(p);

4 Initialize min-heap H;
5 for every p ∈ P do
6 HeapInsert(H,KM ,p);
7 end
8 while fc > fM do
9 extract top node from H: (MSE(p,KM ), p);

10 KM (p) = KM (p)− 1;
11 fc = fc − 1;
12 HeapInsert(H,KM ,p);

13 end
Output: Return KM

14

Function HeapInsert(H, K, p):
15 if K(p) ≥ 2 then
16 K(p) = K(p)− 1;
17 insert (MSE(p,K), p) to H with key

MSE(p,K), (with Eq. 2)
18 K(p) = K(p) + 1;

19 end

20 End Function

Algorithm 1: Algorithm for obtaining the opti-

mal distribution of fragments KM under a fixed

memory budget M .

. . .
. . .

. . .

Input 

Features

Hidden Layer

(128 neurons)

Hidden Layer

(64 neurons)

Output

(Pixel Importance)

. . .
. . .

Pixel 

Fig. 4 A schematic of the neural network exploited to learn
a mapping from image-space buffers to target per-pixel im-
portance.

function. Furthermore, to reduce over-fitting, L1 and

L2 regularization are applied on the first and second

hidden layers respectively. The output layer returns a

per-pixel importance value I(p) ∈ [0, 1] by using the

sigmoid activation function. In the training step of the

network, Mean-Squared Error is used as a loss function

and Stochastic Gradient Descent with a learning rate

set to 0.001 as an optimizer. Finally, a batch size of 512

is used.
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Fig. 5 The rendering pipeline of the proposed deep k-buffer.

3.2 Runtime Phase

3.2.1 MFR Pipeline

Our deep MFR method operates in four main steps sim-

ilar to the variable k -buffer pipeline [23] as illustrated in

Figure 5. We consider the memory fixed, pre-allocated

and linearly organized into variable contiguous regions

of length k(p) for each pixel p. The method comprises

two geometry rendering passes and two quad rendering

passes. A fast, geometry rendering pass (NN Features

Extraction) is responsible for computing and storing the

neural network input buffer features (Sec. 3.1.1), such

as the number of fragments per pixel which could be

accumulated using atomic operations, as they do not

require any complex order-dependent operations (sim-

ilar to how deferred shading works). Then, the pixel

importance I(p) and k(p) are calculated in parallel via

two consecutive full-screen quad passes (Deep Pixel Im-

portance and Per-pixel k Calculation), stored in an 2D

texture per se, and passed on to the final geometry

rendering stage. Finally, the dynamic k+-buffer imple-

mentation [21] is adapted for capturing the k(p)-closest

fragments (Synchronized k-buffer) while ensuring cor-

rect hybrid transparency computation for the discarded

fragments (Sec. 3.3).

3.2.2 Prediction of per-pixel k

The k value of each pixel p, k(p), can be dynamically

assigned on a per-pixel basis according to the pixel im-

portance, I(p), predicted by the trained neural network

without exceeding the pre-allocated memory budget.

Since these values are computed locally (per pixel),

we have to adjust them in image space by perform-

ing a normalization step. We accumulate the unnormal-

ized, predicted importance values in an atomic value

Isum =
∑

p I(p) to get the importance-based probabil-

ity IP (p) = I(p)/Isum of each pixel p. If F (M) is the

number of fragments available under a memory budget

M (Eq. 1), then the final value k(p) is computed using

this simple formula:

k(p) = ⌊F (M) IP (p)⌋ (3)

3.3 (Deep) Hybrid Transparency

Hybrid transparency [8] divides the transparent frag-

ments into two subsets depending on the importance

of their contribution to the final pixel color. One sub-

set consists of fragments with major importance to the

final color (core) and are blended with accurate, multi-

fragment rendering, algorithms that require sorting and

have higher memory and computational demands. The

remaining transparent fragments constitute the second

subset (tail) that is deemed less important to the fi-

nal color and can be blended using less accurate but

faster, approximate OIT algorithms. The two subsets

are finally combined with the opaque background to

produce the final pixel color.

The core is the subset of transparent fragments of a

pixel that has the main contribution to the pixel color

and is extracted using any k -buffer approach [22]. In our

work, the core is consisted of k(p) fragments per pixel,

as allocated by our neural network prediction mech-

anism. If a pixel has n(p) fragments to combine, all

fragments not in the core, n(p)−k(p), compose the tail

subset. The core and tail colors are calculated similarly

to the original paper [8].

The visibility vi of core fragments is defined using

the opacities α of the depth-sorted fragments by using

the over operator [12].

vi =

{
α1 if i = 1

αi(1−
∑i−1

j=1 vj) if i > 1

For the core subset, each color (C) of the k(p) core

predicted fragments is weighted by the visibility and

summed into a new core color layer (Ccore). The opacity

of the core layer (αcore) is the sum of all visibilities of

all the k(p) core fragments.

Ccore =

k(p)∑
i=1

(Ci vi), αcore =

k(p)∑
i=1

vi

The tail fragment color is calculated with a quick ap-

proximation. Weighted Average [3] is used to accumu-

late tail fragment colors (Ci) weighted by their own

opacities (αi) and accumulates their opacities as well.

Caccum =

n∑
i=k(p)+1

(Ci αi), αaccum =

n∑
i=k(p)+1

αi

Then, the accumulated color is divided by the accumu-

lated opacity, producing the tail color (Ctail). Weight-

ing average uses the number of tail fragments t = n(p)−
k(p) to distribute the accumulated visibility equally

among all the tail fragments of the pixel.

Ctail =
Caccum

αaccum
, αavg =

αaccum

t
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The transmittance τtail of the tail composition (how

much can be seen through the composition) is used to

calculate the tail opacity.

τtail = (1− αavg)
t, αtail = 1− τtail

Finally, the final pixel color (Cfinal) is blended from the

core color, the tail color dimmed by the core opacity,

and the background color, weighted by the remaining

transmittance.

Cfinal = Ccore+(1−αcore) (Ctail+(1−αtail)Cbackground)

The core correctly estimates the visibility and color of

its fragments while the tail weights the omitted frag-

ments by their own opacities, approximating their trans-

mittance and color.

4 Experimental Evaluation

We present an experimental analysis of our deep k -

buffer method (DKB) when compared against the fixed

k -buffer (FKB) [2,20] and the variable k -buffer (VKB)

[23] when simulating hybrid transparency [8] with re-

gards to estimated performance (Sec. 4.1) and image

quality (Sec. 4.2) under strict memory budgets M ∈
{20MB, 40MB}. In every possible memory scenario

and resolution, the amount of fragments that can be

distributed across the image depends on the size of

each fragment node and the fragment allocation strat-

egy of each method. In our implementation, each node

stores the fragment color, packed into an unsigned int,

(4 bytes) and a depth value (4 bytes). All experiments

were conducted on a 1430×960 viewport on an NVIDIA

RTX 2080 Super. We have implemented all methods in

OpenGL 4.6. The forward pass of the network was im-

plemented using plain OpenGL fragment shaders. We

evaluated our method on several high depth complexity

scenes (Fig. 6), which were not included in the train-

ing data and exhibit higher depth complexity (30-120

fragments) compared to the scenes in the training data.

4.1 Quantitative Results

Performance.We implemented all methods in modern

OpenGL1. As illustrated in Table 1, our method per-

forms similarly to variable k-buffer, with a performance

overhead depending on the inference time of the neu-

ral network and the neural network feature extraction

pass, offering an interactive performance. Both methods

1 Shader source code available at:
https://github.com/gtsopus/dhoit

offer the same performance during the Synchronized k-

buffer stage but differ in the Feature Extraction and Im-

portance Computation steps. Our method has an addi-

tional overhead during the NN Feature Extraction stage

as it needs to compute and store the neural networks

input features, and during the Deep Pixel Importance

stage (Fig. 5) due to the neural network inference time.

As our method works on a per-pixel basis, its per-

formance is based the number of per-pixel predictions

that have to be performed. Thus, our method scales

properly in larger or smaller viewport sizes.

Table 1 Performance comparison between our DKB and
VKB. Our method with a small performance overhead of-
fers an interactive performance under a fixed memory budget
M , in scenes with maximum depth complexity D.

Method DKB VKB
Vokselia Spawn, M = 20MB, D = 64
Feature Extraction 1.95 0.9
Importance Computation 1.48 0.45
Synchronized k-buffer 18.97 18.97
Total Time (ms) 22.40 20.32
Crytek Sponza, M = 40MB,D = 30
Feature Extraction 1.6 0.45
Importance Computation 3.25 0.39
Synchronized k-buffer 10.38 10.38
Total Time (ms) 15.23 11.22

Memory. The FKB assumes a fixed k value of ex-

tracted fragment layers across the entire image. This

can result in bad memory utilization, as a large and

potentially unused storage space can remain empty in

pixels that contain less than k depth complexity. Both

DKB and VKB consider the memory fixed, pre-allocated

and linearly organized into variable contiguous regions

per pixel. In this manner, storage space is exactly al-

located and properly utilized due to the ability to pre-

allocate storage for a variable, pre-estimated number

of fragments per pixel (see Table 2). FKB manages to

handle a small percentage of the available fragments

while VKB and DKB are able to process almost twice

as much fragments.

Table 2 The captured fragment space of the three tested
k-buffer approaches in two different scenarios with maximum
D depth layers under a fixed storage budget M .

Method FKB VKB DKB
Vokselia Spawn, M = 20MB, D = 64
k(p) 2 1-9 1-5
Fragments (Perc.) 1.6M (24%) 2.7M (40%) 2.7M (40%)
Crytek Sponza, M = 40MB, D = 30
k(p) 4 2-25 4-25
Fragments (Perc.) 2.5M (39%) 5.4M (83%) 5.4M (83%)



8 Grigoris Tsopouridis et al.

1

4

16

64

256

Sponza

Scene 1

Sponza

Scene 2

Rungholt

Scene 1

Rungholt

Scene 2

Vokselia Spawn

Scene 1

Vokselia Spawn

Scene 2

Lost Empire

Scene 1

Lost Empire

Scene 2

Sponza

Scene 1

Sponza

Scene 2

Rungholt

Scene 1

Vokselia Spawn

Scene 1

Lost Empire

Scene 1

M
e
a
n
S
q
u
a
re
d
E
rr
o
r
(x
1
0
-5
)

FKB VKB DKB Op mal k-bu er

M = 20MB M = 40MB

Fig. 6 Mean squared error measurements of the three k-buffer approaches and optimal k-buffer on several scenes with varying
memory budgets (log4 scale). Our method outperforms the competing methods, offering a better image quality while still
having room to improve (Optimal k-buffer).

4.2 Qualitative Results

Our method provides a better image quality both in

terms of mean squared error (Fig. 6), and FLIP mean

error [1] (Fig. 7) in comparison to the aforementioned

k -buffer approaches, under a fixed memory budget.

FKB produces the lowest quality images due to its k

value allocation strategy and potentially wasteful mem-

ory allocation (Table 2), which can be noticed especially

in scenes with uneven fragment allocation and pixels

without any fragments. FBK allocates a fixed, per-pixel

memory to store up to k fragments, even if there are

pixels with lower depth complexity than the selected k

value in the image, which can lead to bad memory uti-

lization. Furthermore, FKB treats all pixels equally by

using a fixed, global k value, thus ignoring fragments

that may potentially have a higher impact on the fi-

nal result. In cases where the fixed k value is not large

enough to approximate OIT, FKB exhibits visual arti-

facts due to incorrect blending or missing detail (Fig.

4.2).

The VKB provides a better image quality due to its

ability to assign a variable per-pixel value of k to re-

gions deemed more important. The k value allocation

is determined using a per-pixel importance value com-

puted according to several importance maps (Fresnel,

Periphery, Depth Complexity heuristics). It solves the

FKB problem of wasteful memory utilization due to its

exact memory allocation strategy and the variable per-

pixel k value. VKB provides better visual results com-

pared to FKB but may still incorrectly approximate

transparency (especially further away from the center)

due to the heuristic rules used for determining pixel

importance.

Finally, our DKB outperforms the aforementioned

approaches due to its ability to determine a more so-

phisticated k-value allocation compared to VKB (Fig.

4.2), allowing higher depth complexity in regions that

are deemed more important and contribute more to the

final result. In a similar way to VKB, our method avoids

the memory utilization problems of FKB offering ex-

act memory allocation and variable per-pixel value of k

which facilitates the full exploitation of a fixed memory

budget.

Our experimental evaluation demonstrates that our

method outperforms the competing methods in a plethora

of testing scenarios with a variety of scene views and

memory budgets in terms of RMSE and FLIP mean er-

ror as shown in Fig. 6 and Fig. 7. While our method

offers better quality than the competing methods, in

many cases, it still lacks in comparison to the opti-

mal k-buffer scheme (Sec. 3.1.2), indicating that there

is still room for improvement by either improving the

neural network architecture, augmenting or enhancing

the training dataset or by choosing more or different of
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input features, such as neighboring or geometric infor-

mation.

Finally, we have provided a video as supplementary

material that compares our method to the unbounded

A-buffer. The video shows that there are no artifacts

caused by camera movement. There are occasional dif-

ferences as compared to the unbounded A-buffer, since

due to limited memory resources some pixels take only

a few fragments and may differ from neighboring pixels.

Such differences from unbounded A-buffer occur in all

fixed memory methods, even in the results obtained by

the optimal fragment distribution.

5 Conclusions

We have introduced an intelligent approach for approx-

imating the optimal distribution of fragments per pixel

under fixed memory budget. The training of the arti-

ficial neural network has been conducted with several

scenes and views and provides impressive approxima-

tion results on all unseen scenes/views that we have

considered. Therefore, we have outperformed previous

competent methods with the trade off of a small perfor-

mance overhead which is less than 10% for large scenes.

The implementation that we have offered is not opti-

mized and we think that it can be improved to reduce

the performance overhead even further.

For some pairs of scenes/views the average MSE is

better than previous approaches but still quite large as

compared to the optimal k-buffer. This may be allevi-

ated by using features that take into consideration the
neighborhood of the pixel or predict the fragment re-

quirements per tile. However, with such approaches one

needs to be cautious with performance issues.

The derivation of the optimal per pixel fragment

allocation works for any multifragment rendering ap-

plication and metric, with very few restrictions. There-

fore, we can use this approach to train networks for OIT

with different metrics [6,1]. Finally, this methodology

may have some merit when applied for fragment alloca-

tion prediction for global illumination [18] or for direct

rendering of Boolean operations [13].
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Fig. 7 A quality comparison between the three approaches and the optimal k-buffer. An error map (generated using the FLIP
tool [1]) is computed between each method and the ground truth. On the top left corner of each image the FLIP mean error
verifies that our method exhibits better results compared to the other two approaches.
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Fig. 8 A quality evaluation between the three k-buffer approaches. Our method achieves better quality results and retains
more detail under a strict memory budget of M = 20MB compared to the other two competing methods.
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son, M., Åström, K., Fairchild, M.D.: FLIP: A difference
evaluator for alternating images. Proceedings of the ACM
on Computer Graphics and Interactive Techniques 3(2),
15:1–15:23 (2020). DOI 10.1145/3406183

2. Bavoil, L., Callahan, S.P., Lefohn, A., Comba, J.a.L.D.,
Silva, C.T.: Multi-fragment effects on the gpu using the
k-buffer. In: Proceedings of the 2007 Symposium on In-
teractive 3D Graphics and Games, I3D ’07, p. 97–104.
Association for Computing Machinery, New York, NY,
USA (2007). DOI 10.1145/1230100.1230117

3. Bavoil, L., Myers, K.: Order independent transparency
with dual depth peeling (2008)

4. Carpenter, L.: The A-buffer, an antialiased hidden sur-
face method. SIGGRAPH Comput. Graph. 18(3), 103–
108 (1984). DOI 10.1145/964965.808585

5. Catmull, E.E.: A subdivision algorithm for computer dis-
play of curved surfaces. Ph.D. thesis, The University of
Utah (1974)
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