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Rasterization-based Progressive Photon Mapping
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Abstract Ray tracing on the GPU has been syner-

gistically operating alongside rasterization in interac-

tive rendering engines for some time now, in order to

accurately capture certain illumination effects. In the

same spirit, in this paper, we propose an implemen-

tation of Progressive Photon Mapping entirely on the

rasterization pipeline, which is agnostic to the specific

GPU architecture, in order to synthesise images at in-

teractive rates. While any GPU ray tracing architecture

can be used for photon mapping, performing ray traver-

sal in image space minimises acceleration data struc-

ture construction time and supports arbitrarily complex

and fully dynamic geometry. Furthermore, this strategy

maximises data structure reuse by encompassing raster-

ization, ray tracing and photon gathering tasks in a sin-

gle data structure. Both eye and light paths of arbitrary

depth are traced on multi-view deep G-buffers and pho-

ton flux is gathered by a properly adapted multi-view

photon splatting. In contrast to previous methods ex-

ploiting rasterization to some extent, due to our novel

indirect photon splatting approach, any event combina-

tion present in photon mapping is captured. We evalu-

ate our method using typical test scenes and scenar-

ios for photon mapping methods and show how our

approach outperforms typical GPU-based progressive

photon mapping.

Keywords Photon mapping · Rasterization · Ray

tracing

I. Evangelou · G. Papaioannou · K. Vardis · A. A. Vasilakis
Department of Informatics, Athens University of Economics
& Business, Greece

Fig. 1 Converged example of our rasterization-based pro-
gressive photon mapping method, using depth 3+3 (light
+ camera). Iteration time (1M pixel samples): 50ms on an
NVIDIA RTX 2080 Ti.

1 Introduction

Photon Mapping [7,8] is a well-known two-stage ap-

proximation to bidirectional path tracing, where light-

carrying paths or photons deposit and cache the carried

flux on non-specular surfaces, pre-multiplied with the

light path throughput. A data structure, the photon

map, is responsible for the storage and fast indexing of

these particles. Subsequently, for multiple paths traced

from the camera, the contribution of photons to hit
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points on non-specular interfaces is estimated, convert-

ing flux to radiance and modulating it with the com-

bined throughput to the sensor. Since the probability

of path vertices from the camera and photon tracing

coinciding is zero, photon mapping relies on a kernel

function that performs photon flux density estimation

to integrate the contribution of particles in the vicinity

of a camera hit point. As the stored particles in the pho-

ton map increase, if a kernel enclosing a fixed number of

particles is used, denser areas will result in a tighter and

more accurate estimator of scattered radiance, while

wider ones may introduce significant bias. The consid-

erable storage required by the photon map(s) and the

inability to predict how many photons are adequate to

converge to an accurate image estimation for a partic-

ular scene led into what is known as the Progressive

Photon Mapping algorithm [4] (PPM). Its subsequent

evolution led to the probabilistic approach [10] to PPM

that we use in this paper (see related work in Sec. 2).

The general idea in all PPM variants is that instead

of tracing and storing a huge amount of particles, pho-

tons are iteratively traced in batches and contribute

energy to camera path hit points, leading to a tighter

and predictable memory budget. At the same time, the

radius of the kernel function is gradually tightened as

more photons contribute to each hit point. For infinite

iterations, the estimator is guaranteed to converge to

the expected value.

The motivation behind our work is the definition

of a photon mapping method that operates entirely on

and benefits from the rasterization pipeline, while it

a) correctly captures all photon mapping light trans-

port paths and b) operates at a performance compa-

rable with or better than established GPU-accelerated

methods. The rasterization pipeline is universally im-

plemented in hardware. On the other hand, the most

efficient to-date frameworks for ray tracing, along with

the supporting implementation of acceleration data struc-

tures, are hardware-architecture-specific.

In our probabilistic PPM variant, we perform all

ray tracing operations using the DIRT architecture [26],

a multi-view image-space approach for unidirectional

path tracing using accurate, analytic ray triangle inter-

section tests. We exploit the intermediate camera rays

hit map that is already built as part of the image-space

ray traversal, to eliminate the need to build and main-

tain a separate importon (camera path particle) map.

Second, we exploit the fact that in DIRT a valid image-

space projection can be established for any point in

space in order to perform indirect splatting to hit points

invisible to the primary camera view. These are the hit

points of secondary camera path segments. This is actu-

ally the first rasterization-based approach to encompass

both direct and indirect splatting, capturing all possible

photon mapping paths, including L(S∗)D(S+)E ones.

DIRT builds a hierarchical cubemap of deep buffers

that index geometry polygons. In terms of performance,

since the image-space acceleration data structure (ADS)

is built very fast via rasterization, our method is ideal

for the interactive preview of photon mapping in scenes

with dynamic geometry (see the pool example in Fig. 15).

Furthermore, even for static scenes, the elimination of

the particle index build step in each iteration of the

stochastic PPM provides a significant performance gain

compared to a respective general-purpose GPU imple-

mentation, as shown in Section 5.

Briefly, the main contributions of this work are:

– Implementation of the full PPM algorithm on the

hardware graphics pipeline, taking advantage of ras-

terization for both the population of the ADS and

photon splatting.

– Reuse of the same data structure to perform both

tracing and camera particle (importon) storage.

– Reordering of camera path tracing and photon trac-

ing in each progressive iteration, with respect to the

original probabilistic PPM approach, in order to ef-

ficiently distribute energy from photons to camera

path hits at arbitrary trace depths.

– Exploitation of an image-space ADS that encom-

passes the entire scene geometry to splat photons

on camera hits at any camera path depth, not just

the directly visible points. In contrast to previous

photon splatting techniques, this effectively allows

capturing all possible events. We also employ Rus-

sian Roulette during splatting, to reduce photon en-

ergy distribution cost.

– Support for arbitrary light sources, exploiting light

G-buffers for fast first bounce estimation of photons,

where possible.

The rest of the paper is organised as follows: Sec-

tion 2 includes a summary of prior art. Section 3 presents

an overview of the stages involved in our method. De-

tails about specific steps introduced in this paper and

their implementation are provided in Section 4. Next, in

Section 5 we report results and evaluate the efficiency

of our method. Finally, Section 6 provides conclusions

and future research directions.

2 Background and Related Work

We provide here a brief overview of the literature re-

lated to physically-based interactive rendering and, more

specifically, progressive photon mapping theory.
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Progressive Photon Mapping. The original algo-

rithm, which was introduced by Hachisuka et al. [4],

loops through two main steps; first, camera paths are

traced, storing the hit point and corresponding path

throughput at all non-specular events. Next, multiple

photon tracing passes follow, where for each one, the

method iterates through all stored camera hits and reg-

isters the photons within the density estimation radius

of each hit point. The newly discovered photons are

used for the progressive refinement of both the radi-

ance estimate and the radius at each camera hit point.

After all the photons of the current batch have been

processed, they are discarded and a new photon trac-

ing pass commences. This continues until the image has

adequately converged. Hachisuka et al. further proved

that with the above refinement steps, photon density

tends to infinity and the result remains consistent.

The idea was further evolved in Stochastic Progres-

sive Photon Mapping (SPPM) [3], where hit points gen-

erated from stochastic path tracing from the camera at

the same pixel share photon density estimation statis-

tics, at the pixel level, allowing PPM to capture distri-

bution effects in a tractable manner. Later on, Weiss et

al. [28] extended SPPM to take into account pre-defined

animated scenes when calculating the pixel statistics.

In 2011, Knaus and Zwicker [10] proved that the rate

at which the radii are reduced is independent of the lo-

cal photon density and that the gathering of any local

density estimation statistics is unnecessary. The pro-

posed algorithm (abbreviated here as PPPM), which we

briefly describe below, exhibits the same convergence

behaviour as the original progressive photon mapping

approach.

The estimate of the radiance L̂(x, ωo) at a camera

hit point x, due to the photons j = 1 . . .M with po-

sition xj and contribution γj in a radius r, prior to

multiplication with the camera path throughput up to

that point is:

L̂(x, ωo) =
1

M

M∑
j=1

kr(||x− xj ||)γj ,

kr(ξ) =
1

r2
k

(
ξ

r

)
,

(1)

where the photon contribution γj is the product of the

emitted photon flux and the BSDF at each scattering

event up to x (inclusive), divided by the probability

density function of the sampling process that gener-

ated the photon path. k(ξ) is a user-defined canonical

kernel function and r is the bandwidth of the kernel,

which defines the area over which the density estima-

tion takes place with non-zero photon contributions.

M is the number of emitted photons in the batch. At

each step i, the radius is refined according to a con-

stant α ∈ (0, 1), which controls how fast the density

estimation area constricts:

ri+1 = ri

√
i+ α

i+ 1
. (2)

Higher α values favour more drastic variance reduc-

tion and slower error minimisation, while lower values

do the opposite. In the original paper, the authors make

a comprehensive study of the error and variance and

also provide an estimator for volumetric photon map-

ping.

Interactive Ray Tracing. For the interactive render-

ing of static scenes, environments with small updates

and/or rigid-only motion, any established offline ren-

dering method relying on tracing rays through the en-

vironment can nowadays be easily mapped to GPU ar-

chitectures using any of the available or emerging ray

tracing SDKs.

Fast ray traversal typically requires more optimised

ADS construction, which translates to increased con-

struction times, practically rendering this stage a pre-

processing one, outside the ray shooting and traver-

sal cycles. For a comprehensive performance analysis

of this genre of ADSs and corresponding methods, the

interested reader may refer to [27].

Despite various ADS readjustment strategies for an-

imated data, interactivity becomes problematic, in gen-

eral, when geometry is dynamically computed, tessel-

lated or topologically changed very frequently, since the

ADS has to be rebuilt from scratch.

Targeting interactive scene updates, one-level or hi-
erarchical uniform grids [9] can be built very fast and of-

fer reasonable traversal performance for relatively uni-

form primitive distribution in the scene. Perspective

grids [2] improved the primitive density per ADS cell

and the traversal speed for coherent ray batches, e.g.

primary rays. Fragment-based data structures are very

fast to build by exploiting the hardware rasterization

pipeline. They range from typical rasterized voxel grids,

to single-view multi-layer ADSs (e.g. [14]) and finally,

to multi-view data structures such as orthogonal A-

buffers [5] and cubemap A-buffer [25]. Ray traversal is

usually performed with object-space ray marching [22]

or image-space ray marching, in a linear [17] or hierar-

chical manner [24]. While fragment-based ADS meth-

ods can very efficiently support dynamic scenes, they

generally create sub-optimal structures and often result

in poor sampling of oblique or small geometry, leading

to ray misses. Thus, to produce more accurate results,

a primitive-based ADS can be employed instead.
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Fig. 2 The deep cubemap data structure used for primitive
indexing and ray traversal in the DIRT ray tracing architec-
ture [26]. Here, an xy plane cut-section is shown.

Deferred Image-space Ray Tracing (DIRT). Since

for all tracing operations we rely on the DIRT archi-

tecture by Vardis et al. [26], we present here a high-

level overview of its operation. DIRT introduced a pure

rasterization-based approach for analytically tracing rays

at interactive frame rates. Primitives are rasterized and

their IDs are stored in a user-centred, deep cubemap-

like arrangement, encompassing all the scene geome-

try (Fig. 2). Each multi-layer cubemap side is imple-

mented as an A-buffer linked-list data structure using

a per-pixel variable-range, uniform binning to store the

primitive information. Ray traversal is performed hier-

archically in image space, moving to a different view of

the cube-map arrangement, if necessary. Various empty

space skipping mechanisms are proposed and imple-

mented, including hierarchical image-space ray march-

ing.

Ray hits are recorded in a sparse hit buffer list. The

hit buffer is indexed by cubemap pixel coordinates and

each cell may contain more than one entry, correspond-

ing to multiple rays intersecting a cubemap pixel. Shad-

ing data interpolation is batched for all hits in a sepa-

rate pass, prior to shading and spawning of new rays.

The hit buffer can be easily masked for the efficient ex-

ecution of the latter stages.

Interactive Photon Mapping. In the interactive ren-

dering domain, the first attempt to perform photon

mapping entirely on the GPU, dates back to 2003, with

the work of Purcell et al. [21]. Image space photon map-

ping [16] takes advantage of the light and camera G-

buffers to dispense with the tracing of the first light

and camera path segments, while continuing the trac-

ing of the intermediate segments in the CPU. Yao et

al. [29] performed all tracing operations in image space

over multiple single-layer cubemaps in the environment.

The success of the approach greatly depended on the

ability of the selected number of cubemaps to capture

the entirety of the scene. Mara et al. [13] study vari-

ous strategies for gathering and distributing photon flux

and, among other options, optimised the voxel hashing

idea of Ma and McCool [12] for the GPU as an index-

ing scheme for nearest photon search for gathering. Fast

gathering of k-nearest photons for interactive rendering

has also been investigated, leading to specialised near-

est neighbourhood search approaches, such as [11].

The photon density estimation step of photon map-

ping is often too costly to perform in interactive render-

ing. An alternative approach is to perform the inverse

operation, where energy from each photon is distributed

to affected points directly visible to the camera, using a

pre-calculated radius of influence. When primitive ras-

terization is used for covering the area of support of

the kernel function in image space, the process is re-

ferred to as photon splatting [23]. Although simple to

implement in the GPU, many works in the literature

focus on issues that arise such as excessive overdraw of

particles and wasteful computations (e.g. [13]). Moreau

et al. [18] implemented a hybrid photon mapping so-

lution, where photons are traced using the NVIDIA

OptiX framework [20] and their energy is distributed

using a hierarchical frame-buffer-aligned structure for

efficiency. Please note that methods in the literature

that perform or improve splatting, only handle photons

arriving within the camera view, whereas our approach,

based on a multi-view buffer, rasterises splats at arbi-

trary camera sub-path nodes. This allows the capture

of all photon density estimation events at any camera

depth and any part of the scene.

Algorithm 1: Rasterization-based PPM

AllocMemory(); // Allocate geometry, photon

// and camera buffers

Init(); // Populate all buffers, init. PPM radii

i← 1;
while true do

for Nipf iterations do
DirectCameraHits(); // G-buffer

DirectPhotonHits(); // Fig. 3, stage 1

for max photon tracing depth dphoton do
TracePhotons(); // Fig. 3, stage 2

end
DirectSplatting(); // Fig. 3, stage 3

for max camera tracing depth deye do
TraceImportons(); // Fig. 3, stage 4

IndirectSplatting(); // Fig. 3, stage 5

end
UpdatePPMParams(); // Fig. 3, stage 6

i← i + 1;
end
if view or scene is invalidated then

Init();
i← 1;

end

end
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Fig. 3 The sequence of stages in each iteration of our rasterization-based probabilistic PPM.

3 Method Overview

Our probabilistic PPM approach attempts to faithfully

encompass all steps in the original algorithm, captur-

ing all L(S|G|D)*E paths, while taking advantage of

rasterization stages and their output, where available.

It also heavily exploits both the camera G-buffer and

the multi-view image-based structure to splat photons,

even when not directly visible in the camera view. A

high-level outline of our PPM variant is shown in Al-

gorithm 1 and Figure 3. The outer loop of the method

is the typical (stochastic) PPM iteration, which is reset

(along with the PPM parameters) each time any scene

update takes place. A nested loop (not shown in the fig-

ure) performs Nipf iterations of PPM, before updating

the results to the output frame buffer. Note that this

inner loop is only useful for animated scenes and Nipf

(iterations per frame) is set to 1, otherwise. For pre-

viewing animated geometry it is useful to allow PPM to

converge to a better estimate, than using the initial one

after the scene changes. The two inner loops correspond

to photon and camera tracing iterations for arbitrary,

user-defined maximum path lengths (dphoton, deye).

Data Structures and Memory Allocation. The

memory for the image-space data structure for prim-

itive storage is pre-allocated, similar to DIRT. In Sec-

tion 5.1 we discuss the impact of the resolution of the

cubemap buffers to the performance.

Next, a light tracing hit buffer (see DIRT overview

above) is pre-allocated with a fixed number of entries.

For tracing photons at maximum dphoton depth, if each

photon batch contains Np photons, shared among the

light emitters, dphoton ·Np potential photon hit entries

are allocated. Note that this buffer includes all light

path nodes and not just the deposited photons; the

presence of a photon is signified by a suitable flag in

each hit record. The depth of each light path hit point is

easily identified by its buffer index number and an “ac-

tive” flag marks any missed photon ray intersections,

which signify a discontinued path. The same flag is used

when a photon path is terminated due to the Russian

Roulette mechanism.

Finally, we also allocate a frame-buffer-sized PPM

buffer, which holds the updated per-pixel data needed

by progressive photon mapping, such as the current es-

timate of the gathered pixel radiance and ri (see Eq. 2).

Initialisation. The camera G-buffer is prepared as usu-

al. Shadow maps are also constructed per light source, if

used in direct lighting estimation and first-bounce pho-

ton splatting. For large area lights that cannot be ade-

quately approximated by punctual sources and shadow

maps, the primary light tracing hit for direct lighting

are employed instead. Alternatively, we can emit each

photon batch from different locations sampled on the

emitters, thus exploiting the shadow maps at the jit-

tered points. For each pixel, the gathered radiance is

zeroed and the initial per-pixel radius r1 is set in the

PPM buffer (see Sec. 4.1).

Direct Photon Hit Pass. This stage detects the first

hits of the photons emitted from the light sources and

records them in the photon hit buffer. Depending on
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the approach used, this first bounce can use the shadow

map(s) to directly determine the world position of M

photons jittered on the parametric space of the shadow

map using a compute shader, or trace the photons from

random positions on the emitters using DIRT. While

the first approach is faster, tracing the photons allows

for arbitrary emission patterns and surfaces.

Photon Caching and Tracing. At each photon hit,

we stochastically, determine the scattering event (D for

diffuse, G for glossy, S for specular) via importance sam-

pling. Next we choose the appropriate sampler for the

next path segment and modify γj for the current pho-

ton j. We mark a photon hit as a stored photon on a

diffuse event or if the roughness exceeds a predefined

value for a glossy scattering event.

All secondary photon path segments are traced in

image space using the ray traversal of DIRT and ana-

lytic ray-primitive intersections. Note that for efficiency

and to sample as many paths as possible with the cur-

rent photon batch, all photons keep scattering up to the

maximum photon tracing depth dphoton or until their

path is terminated according to Russian Roulette, i.e.

they do not stop at the first diffuse surface.

Direct Splatting. Each photon deposited due to any

indirect light tracing bounce is splatted on the camera

image plane and the photon contributes to all camera

pixels whose density estimation area of radius ri around

the first visible point includes the photon. These visible

points can be easily obtained from the camera G-buffer,

so this pass is performed before tracing any camera

rays, similar to prior methods using photon splatting

in the bibliography. The splat radius, which determines

what primary camera hit points the photons contribute

to, is determined globally and adjusted in each PPM

iteration. If direct lighting via photon splatting is en-

abled, we also splat primary photon hits.

Camera Path Tracing and Indirect Splatting. Af-

ter the direct splatting of photons, camera hit points

that were not marked as density estimation points sam-

ple a new ray direction and start tracing paths using

DIRT. For each new wavefront of hit points at a given

tracing depth k and after deciding on the type of event

(D, G, S) for each point, all currently deposited pho-

tons are splatted against the current list of non-specular

camera hits at this depth. However, while in the direct

photon splatting step the camera G-buffer was used for

this task, here the photons are splatted on the views of

the DIRT cubemap, since there is no guarantee that the

density estimation points are located within the cam-

era frustum. The resolution of the DIRT deep cubemap

does not affect the quality of the photon energy distri-

bution operation, since photons directly interact with

the lists of registered camera hits in the DIRT hit map.

Resolution only affects the sparsity and length of the

hit record lists and thus performance (see Fig. 8).

This process is repeated for each camera bounce.

Camera rays are culled using Russian Roulette and at

each photon density estimation event, the estimated

radiance L̂(x, ωo) is multiplied with the camera path

throughput and temporarily stored in the PPM buffer.

PPM Parameters Update. At the end of each PPM

iteration the radius ri is updated based on Equation 2

and so does the splat radius. Finally, the radiance es-

timate of the primary camera rays is incrementally av-

eraged over the i-th iterations so far, after adding the

local illumination, if computed separately.

4 Method Details

4.1 Per-pixel Bandwidth Estimation

The density radius r1 for the importons is initialised

per pixel and stored in the pixel buffer, in order to be

updated in every progressive iteration. Alternatively, a

global value can be set by the user. However, it is non-

trivial to manually achieve a tight upper bound for the

entire scene, due to depth differences, perspective and

scattering of the camera paths.

We follow the un-projection strategy described in [10],

where a global image-space radius scale (in pixels) sr is

given and then the corresponding per-pixel radius r1 in

world coordinates is computed by back-projecting onto

the visible geometry:

r1 = sr

√
4 tan2(θfov/2)||p− c||2 (r · dfront)3

πh2|n · r|
, (3)

where n is the normal vector at the world-space po-

sition p of the visible fragment, c is the ray origin, r

is the ray direction (normalised p− c). The parameter

h is the height of the image in pixels, θfov the verti-

cal aperture and dfront is the look-at camera direction.

The value of sr is typically set to 10-15 for an 1MPixel

frame buffer, while ri is computed for every pixel inde-

pendently according to Equation 2.

Since the photon density estimation does not only

occur at the primary camera ray hits, the radius at the

k-th depth r
(k)
i must be evaluated based on the current

radius ri. To properly determine this, the ray differ-

entials [6] up to the hit location must be taken into

account as suggested in [10]. To simplify computations

and reduce propagated data per ray, we estimate the ra-

dius r
(k)
i for the hit point encountered at depth k of the

camera path by expanding the solid angle through the

pixel as being scattered with no distortions (Fig. 4); we



Rasterization-based Progressive Photon Mapping 7

Fig. 4 Projected initial photon density estimation radius

r
(k)
1 for the k-th camera bounce (k=1, 2 here). See Eq. 3, 4.

only need to keep track of the cumulative path length

including the k-level segment and the primary hit dis-

tance l0 = ||p− c||:

r
(k)
i =

ri
l1

k∑
l=1

lk, k > 1. (4)

Knaus et al. [10] also set a minimum and a max-

imum world-space radius rmin, rmax to avoid corner

cases. We respect the same limits, which are reduced

by the same shrinkage ratio in each iteration. Main-

taining rmax is important to our implementation, as we

set the photon splat radius equal to it, so that the splat-

ted photons are guaranteed to contribute to the correct

importons, whose radius is rmin ≤ r
(k)
i ≤ rmax. This

serves as an upper bound for the splat radius but there

is no other way to estimate it without actually query-

ing the nearest importons, an operation that should be

clearly avoided.

4.2 Photon Splatting

As mentioned in Section 3, photon splatting uses either

the camera view or the cubemap side of DIRT that the

photon is projected on (Fig. 6a), depending on whether

the splatting corresponds to the primary camera rays

(direct splatting - Fig. 6b) or a secondary camera path

segment (Fig. 6c). The splatting mechanism is almost

identical in the two cases: a quad centred at the pho-

ton hit location is drawn using a geometry shader and

the list of camera hit points associated with the cur-

rent view is iteratively processed to locate hit points

Fig. 5 Fragment reduction with Russian Roulette (RR) dur-
ing splatting, trading variance for a substantial decrease in
both direct and indirect splatting times.

whose ri include the photon location. In the case of di-

rect splatting, the process is simplified as the generated

splat fragment directly maps to the unprojected visible

point in the G-buffer and no search for candidate hit

points is needed. In the indirect splatting, in order to

determine which DIRT view the photons must attempt

to splat on, the latter are culled on each frustum, ac-

cording to their position and splat radius.

Primarily to accelerate initial iterations, where the

splat radius is large, we optionally introduce a Rus-

sian Roulette splat fragment rejection mechanism with

probability 0.5. This effectively introduces some vari-

ance but shortens splatting times about 20%-30% for

indirect splatting and 40%-50% for direct splatting (Fig.

5).

The splat radius is globally decreased in each iter-

ation according to the rate of Equation 2. This avoids

wasting GPU computations and decreases splatting cost

over time. It is also possible to employ a better splat

radius estimation, as proposed by Frisvad et al. [1].

4.3 Light Sources

Our method can support multiple light sources by split-

ting the number of photonsM according to user-defined

balance ratios. Even though typical automatic heuris-

tics could be used, their study is outside the scope of

this paper. For omnidirectional light sources we prefer

to compute direct lighting via photon tracing instead

of cubemaps or paraboloid maps, since the additional

passes and memory cost are hardly justified, while ex-

hibiting the typical shadow map artefacts. The Bath-

room, Pool and Fireplace scenes in Figure 7 are ren-

dered this way.

5 Evaluation

We ran experiments with scene complexity ranging from

a few thousand to over a million triangles (Table 1)

and photon batches of 262K photons, unless otherwise

stated. For most scenes, we allowed a large number of
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(b)

(c)

(a)

Fig. 6 Photon Splatting. (a) Photon projection on camera
and cubemap frusta for direct and indirect splatting, respec-
tively. Below, details showing the splatting on the (dense)
primary camera path hits (b) and the indirectly traced im-
portons on a DIRT ADS view (c).

light-to-eye path segments (≥ 3) in order to capture

all intricate global illumination effects and also stress-

test our method. Our most elaborate examples are pre-

sented in Figure 7.

All experiments were performed on an NVIDIA RTX

2080 Ti graphics card with 12GB of video memory. The

host system is irrelevant since all computations are exe-

cuted on the GPU. All scenes include LS+D(D|G|S)∗E
paths to some degree so that caustics and specular (in-

direct) shadows could be formed. We avoided including

large open environments, as the photon mapping al-

gorithm is not the most suitable approach for them.

Finally, unless otherwise stated, all our test scenes are

evaluated at 1MPixel resolution except from the Fire-

place scene, which is rendered at 2MPixel.

In order to maximise ray tracing performance on

the DIRT ADS, we have evaluated the impact of the

cubemap resolution and have tuned the number of bins

per buffer cell independently for each scene between 12

and 16.

5.1 Memory Usage

Memory consumption is directly affected by the cube-

map resolution, however the smaller the resolution, the

higher the number of primitives per cell. This in turn,

translates to more ray-triangle intersections and longer

list traversals for the fetching of primitive shading prop-

erties (as indicated by the authors of the DIRT method).

Figure 8 clearly demonstrates this behaviour and also

shows that choosing a resolution of 2562 for the cube-

map buffers is generally a good trade-off between mem-

ory consumption and ray tracing speed, while for higher

performance a resolution of 5122 is preferred, at the ex-

pense of an increased memory total cost. Going to a

finer discretisation not only increases the memory ex-

cessively, but also hinders traversal due to longer ray

marching and too many hierarchical level hops, which

amplifies incoherent memory accesses.

It is worth mentioning that the proposed method,

contributes zero memory overhead to the total ADS

memory consumption pool, since the importon storage

is implicitly handled by the DIRT update chain in ev-

ery iteration. The total size of the PPM buffers, i.e.

photon buffer and PPM parameters as well as radiance

estimate, depends on the image resolution R and the

number of photons in a batch M , times the number of

light tracing segments L (L = 1 indicates direct photon

hits). Specifically, this equals to 16 bytes per pixel ra-

diance and radius estimate, an equal size intermediate

buffer to accumulate splat estimations and 64 bytes per

photon entry, which yields a total cost of 32R+ 64ML

bytes of GPU memory.

5.2 Performance

Figure 9 shows a breakdown of the rendering time per

iteration for three different scenes, while Figure 10 pre-

sents average rendering times on the pool scene with
different eye and light path lengths. We observe that

two factors predominately affect the performance of

the method: i) the number of fragments generated dur-

ing the indirect photon splatting, which in turn corre-

sponds to excessive searches in the hit buffer for scatter-

ing events from focused L(S∗)D(S+)E paths and ii) the

number of secondary rays, for both the camera and light

paths. On the other hand, even though direct splatting

may generate a vast number of fragments, it does not

incur any significant performance hit, as these splats are

resolved using only the camera G-buffer. Primary ray

generation from both the camera and light sources can

be fully optimised through rasterization with minimal

overhead.

Another notable factor impacting performance is

the splat radius (bandwidth) for the indirect splatting,

as for each reconstructed location corresponding to a

splat fragment, the entire list of camera path hits in the

same view frustum of the cubemap must be traversed.

Large splat radii increase the rendering time but the
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Fig. 7 Test scenes used for the experimental validation of our method, encompassing complex light transport events. Numbers
in the parentheses indicate the light and eye path lengths respectively. From top left to bottom right, both low- and high-
frequency illumination effects are accurately captured on Bathroom (4+4), Fireplace (5+5), Bunny (2+2), Pool (4+4), Sponza
(3+3), Ring (3+3), and Glass (5+5) scenes (see Tab. 1 for details).
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Fig. 8 Memory consumption and ray tracing time versus
cubemap image resolution, for constant photon batch size.
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iterative bandwidth reduction (Eq. 2) and the hard ra-

dius limit both guarantee that the overall performance

rapidly stabilises to a good level (Fig. 9).

We also evaluate the performance of our method

against a typical general-purpose GPU implementation

of the PPM pipeline using the NVIDIA OptiX frame-

work for ray tracing and CUDA FLANN [19] for GPU-

accelerated nearest neighbours search of particles

(Fig. 11). In every frame, we construct a new CUDA kd-

tree for the photon particles, with buffers shared with

Direct camera hits Direct photon hits Photon trace
Direct splatting Camera trace Indirect splatting
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Fig. 9 Individual stage times for the first 480 iterations of
our method on three scenes of different geometric and PPM
complexity.

OptiX in order to have zero data transactions with the

host system. In our experiments, every kd-tree is ini-

tialised with leaf size equal to 64, the sorted output

of each query is disabled and the number of maximum

leaves to be visited during traversal is set to unlim-

ited. Since CUDA FLANN requires pre-allocated GPU
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Fig. 10 Individual stage execution times for the pool scene
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over 1000 PPM iterations. 2 MPixel image buffer.

buffer pointers as input to the gathering phase, we in-

voke the radius search for a fixed maximum capacity

of 100 photons, a parameter we found optimal between

quality and performance.

Despite the comparatively slower ray traversal of

the implemented DIRT ADS compared to the optimised

OptiX ray tracing times, our method has a significantly

better overall performance due to two important fac-

tors: First, our PPM variant dispenses with the par-

ticle ADS construction in each frame, which in con-

trast, burdens the OptiX-CUDA FLANN implementa-

tion (see Tab. 1). Second, the introduction of photon

splatting instead of gathering at all camera path depths

inherently outperforms a tree search due to its trivially

parallel fragment-based execution. During the first 50

frames, the measured times were approximately 5% and

3% higher than the reported average for our method

and the OptiX-CUDA FLANN implementation, respec-

tively.

Finally, we measured the performance of our method

against the OptiX-CUDA FLANN implementation for

different photon batch sizes (Fig. 12) and different reso-

lutions up to 4K (Fig. 13), on scenes with different pho-

ton and camera path distributions. As the photon batch

size increases, the image-space photon tracing takes a

significant part of the overall PPM cycle. However, for

the corresponding number of photons, the FLANN ADS

build time and gathering also has a significant overhead,

resulting in noticeably higher cycle times, in all cases.

The same behaviour was observed, when increasing the

frame buffer resolution, with any gain in camera path

tracing times being overshadowed by the queries in the

OptiX-CUDA FLANN implementation.

Table 1 ADS construction time for the example scenes using
a cubemap side resolution of 5122 cells for our method vs the
OptiX-CUDA FLANN implementation.

ADS Construction (ms)
Scene Primitives Our method OptiX-CUDA FLANN

(Image-space) (BVH + kd-tree)

Glass 9.3K 1.5 76.0 ( 2.9 + 73.1)
Pool 35.7K 1.6 48.0 ( 3.6 + 44.4)
Bunny 72.9K 4.0 57.0 ( 7.5 + 49.5)
Ring 124.8K 2.8 41.8 ( 5.1 + 36.7)
Bathroom 235.5K 5.0 73.6 ( 5.0 + 68.6)
Fireplace 143.3K 5.5 66.1 ( 4.3 + 61.8)
Sponza 1,249.3K 11.1 84.2 (23.7 + 60.5)
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Fig. 11 Timing comparison between our PPM variant and
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ings. Comparison between our method and the OptiX-CUDA
FLANN implementation for three scenes from Fig. 7 with dif-
ferent photon distributions.

5.3 Quality

Since our method uses analytical intersection tests and

either full photon energy deposition or a statistically

compensated one (Russian Roulette), it has no impact

on the quality of the converged frames, as illustrated

in Figure 14 - bottom row. Furthermore, due to the
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Fig. 14 Quality comparison for equal time (top) and con-
verged results (bottom) between our method and the OptiX-
CUDA FLANN implementation for the Sponza (left) and
Pool (right) scenes.

faster PPM cycles, our method delivers higher quality

for equal rendering time (Fig. 14 - top).

5.4 Dynamic Geometry and Animation

In Figure 15, two animation examples are shown, one

where the geometry is procedurally displaced via a com-

pute shader (Pool scene, left) and one, where only the

camera and light positions change (Bunny scene, right).

When previewing animations, we can set the number of

iterations per frame to Nipf > 1 so that PPM can per-

form a few cycles prior to displaying each frame. In

these particular examples we use Nipf = 2. Since typi-

cal construction times for the DIRT ADS fall way below

11ms, as shown in Table 1, the ADS can be completely

rebuilt in every frame.

In general, the complete rebuild of the ADS does

not significantly impact the rendering times, therefore

the method is well-suited to dynamic content, with the

performance having minimal correlation to the extent

or nature of the update.

Fig. 15 Animation examples showing caustics from a pro-
cedurally animated water surface (left) and specular shad-
ows from a moving spotlight (right). The 1MPixel frames
were rendered at 80ms and 48ms respectively, with 2+2 path
lengths and Nipf = 2. The bottom insets correspond to con-
vergence after 1000 iterations.

6 Conclusions

We have presented an adaptation of the probabilistic

progressive photon mapping method for the GPU, by

reordering camera and light path computations so that

we can take advantage of splatting for all hits on the

camera paths, even those that are not visible to the

camera frustum. We employ rasterization for both the

splatting operations at all camera trace levels and the

construction of the ADS for the ray tracing, taking

full advantage of the GPUs hardware. We compare our

method against a typical general-purpose GPU photon

mapping implementation, performing both ray tracing

and gathering operations on the latter, and show how

the splatting at camera path diffuse events at any pos-

sible depth can vastly accelerate the density estimation

procedure.
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One limitation of our method is the dependence of

the performance on the positioning of the cubemap in

the scene. Although the projective cell density of the

DIRT ADS provides opportunity for performance in-

crease, when placed near a light source or the camera, it

can be difficult to tune in certain cases, leading to a po-

tential ray tracing performance degradation of approx-

imately 10− 20%. For example, in scenes with multiple

equivalent light sources power-wise, placing the DIRT

ADS over a single emitter, may lead to sub-optimal ray

traversal performance for the rest.
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