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ABSTRACT

This chapter introduces WebRays, a GPU-accelerated ray intersection engine for

the World Wide Web. It aims to offer a flexible and easy-to-use programming

interface for robust and high-performance ray intersection tests on modern

browsers. We cover design considerations, best practices, and usage examples for

several ray tracing tasks.

1 INTRODUCTION

Traditionally, ray tracing has been employed in rendering algorithms for

production and interactive visualization running on high-end desktop or server

platforms, relying on dedicated, native, and close-to-the-metal libraries for optimal

performance [2, 5]. Nowadays, the Web is the most ubiquitous, collaborative,

convenient, and platform-independent conveyor of visual information. The only

requirement for accessing visual content online is a web browser on an

Internet-enabled device, dispensing with the dependence on additional software.

The potential of the Web has driven Khronos to release the WebGL specifications

in order to standardize a substantial portion of graphics acceleration capabilities

on the majority of new consumer devices and browsers. As a result, frameworks

like ThreeJS and BabylonJS emerged, enabling various visualization applications

that take advantage of the Web as a platform [4]. However, these solutions have

been explicitly designed for widespread commodity rasterization-based graphics,

before ray tracing was popular. There is currently no functionality exposed that

accommodates client-side GPU-accelerated ray tracing on this platform.

We developed WebRays to fill this gap, by aiming for an as-thin-as-possible

abstraction over any underlying graphics, or potentially compute, application

programming interface (API). Following the successful design of modern ray
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Figure 1. The Space Station scene rendered using a unidirectional path tracer

implemented in WebRays (trace depth 4).

tracing engines, WebRays exposes an easy-to-use and explicit API with

lightweight support for acceleration data structures, to enable ray/triangle

intersection functionality in Web-based applications. It is by design not intended

to implement a specific image synthesis pipeline. Instead, it offers a framework for

ray tracing support that can either act as a core API for implementing diverse

rendering pipelines and algorithms or as a complementary toolkit to harmoniously

coexist with and enhance rasterization-based graphics solutions (see the example

in Figure 1). This is achieved by allowing access to ray tracing functionality both

with stand-alone intersection procedures and individual ray tracing function calls

from within a standard shader program.

A prototype version of the API was successfully utilized for the implementation of

the Rayground platform [7]. Rayground is an open, cross-platform, online

integrated development sandbox and educational resource for fast prototyping and

interactive demonstration of ray tracing algorithms. It offers a programming

experience similar to a standard, GPU-accelerated ray tracing pipeline that allows

customization of the basic ray tracing stages directly in the browser.

In this chapter, we cover the system architecture and programming interface

design as well as provide representative usage examples via code snippets for a

gentle introduction to WebRays.
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2 FRAMEWORK ARCHITECTURE

Modern APIs that support ray intersection acceleration, such as DXR and

OptiX [2, 5], are designed to give explicit control to developers. Users are given

as much freedom as possible over resource management and control flow.

WebRays sets a similar goal.

2.1 DESIGN GOALS

We want to bring ray tracing functionality to modern browsers, with no specific

conditions or exceptions and irrespective of platform. We strive for independence

from a particular specialized or low-level graphics API. Users refer to engine

resources using opaque handles, and information about internal storage types is

only communicated to the user in order to help achieve optimal performance.

Having often been on the user end of similar frameworks, we recognized the need

for a modern API that simultaneously supports two different approaches to ray

tracing:

> Wavefront: A simple, general-purpose execution model for tracing arbitrary

ray batches in bulk.

> Megakernel: A programming interface for ray tracing within a GPU shader.

In wavefront ray tracing, the entire process is divided into small, discrete phases,

corresponding to specific kernels, which are executed successively and process

data in parallel (Figure 2, left). On the other hand, in the megakernel approach, a

single kernel is launched. All operations including intersections, visibility

determination, shading, etc. take place within this single kernel (Figure 2, right).

This allows user code to closely follow the underlying algorithm and can therefore

Wavefront Ray Tracing Megakernel Ray Tracing
N

Application WebRays APIShader

Generate Intersect

hit
miss

Get Shade Cull

N

Respawn Generate Intersect

hit

Get Shade Cull Respawn

Figure 2. Wavefront and megakernel ray tracing conceptual models. Left: ray tracing

consists of simple parallel steps. Note that all stages (except Intersect) can be executed

on either host side or device side. Right: A monolithic kernel is responsible for the

entire ray tracing process.
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be considered more programmer-friendly. However, given the nature of modern

streaming processors, it can lead to serious occupancy and divergence issues as

the potential execution paths and access patterns may vary significantly.

Each approach operates under different design considerations, and we wanted to

properly support both. In WebRays, this is completely up to application logic, and

the user can also combine the two strategies. To this end, the API offers both a

host-side interface implemented in JavaScript and a device-side interface

implemented in the backend’s shading language (GLSL). Performance-sensitive

parts of the library are written in C++ and compiled to WebAssembly.

WebRays is not intended as a stand-alone pipeline for image synthesis. It does

not introduce features such as specific shading models and material properties,

nor does it enforce a particular image synthesis algorithm. In the same spirit, with

WebRays you do not write kernels that respond to specific events. The developer

is free to implement their own pipeline, which of course comes at the cost of more

user-defined “glue” code. With this generic, yet complete, ray tracing support,

one can even build wrapper APIs on top of WebRays to conform to popular ray

tracing frameworks. Finally, capturing the typical needs of practical rendering

implementations, it currently supports triangle primitives.

2.2 HOST-SIDE API

The JavaScript API is accessible through the standard web development

workflow. Working with this host-side API is very similar to most ray intersection

engines. To start, users submit triangle meshes to build acceleration data

structures over their geometric data. These acceleration data structures are built

on the CPU and later uploaded to the GPU for fast intersections. The API uses

handles to refer to these structures on both the host and the device sides. Users

“submit” rays for intersection by allocating and populating appropriately

formatted ray buffers. Similarly, intersection or occlusion results are returned to

the user through appropriately formatted intersection buffers. These allocations

are handled by the user to allow for full control over the application’s GPU

memory management. To facilitate a wavefront approach, the host-side API

offers functions that take a batch of rays, identify ray/geometry intersections in

parallel, and finally store the results in properly formatted buffers. Nothing needs

to leave the GPU in this process, and the results are ready to be consumed in a

shader or fetched back to the CPU.
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2.3 DEVICE-SIDE API

The device-side API enables users to write megakernels and hybrid rendering

solutions. The biggest challenge is to be able to provide access to geometric data

and ray tracing functionality in a flexible and unobtrusive manner. Like early

OpenGL, current programmable graphics pipelines for the Web are configured

with string-based shaders provided in source form. In WebRays, the shader code

that constitutes the device-side API for ray intersection functionality is a simple

string, automatically generated by the engine. Developers can acquire this string

via an API call and prepend it to their own source code.

The attached code gives access to in-shader intersection routines and helper

functions for accessing geometric properties of intersected objects. We did not

want to offer yet another shader abstraction layer as this would not fit well with

existing graphics applications that want to add ray intersection functionality. All

calls and variables are appropriately isolated in their own namespace, in order to

avoid clashes with users’ code.

The WebRays intersection engine allocates GPU resources for internal data

structures, which need to be bound to the user’s program for the device-side API

to function properly. These resources are commonly passed from the host to the

device through shader binding locations. The API offers a function that returns a

binding table containing the name, type, and value of the resource that needs to

be bound to the shader before execution.

WebRays is currently implemented on top of WebGL 2.0. The remainder of the

text exposes several WebGL-specific implementation details and best practices.

Familiarity with any OpenGL version will greatly help the reader.

2.4 ENGINE CORE

Device-side computation in WebGL 2.0 is available via plain fragment shaders.

Also, memory allocation and sharing must be handled through standard textures.

When memory needs to be exchanged between WebRays and the rest of the

application, e.g., passing a ray buffer for intersection and receiving the results, it

is passed using appropriately formatted textures. Thankfully, the support of

multiple render targets in WebGL 2.0 makes this process quite streamlined.

The intersection engine and the application achieve interoperability by both

operating on the same WebGL context. In order to help users manage their GPU

resources, WebRays is transparent about its memory requirements, layouts, and
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WebRays Wavefront/Megakernel Ray Intersection Pipelines

WebGLIntersectionEngine(...) CreateAds(...), AddShape(...), 
AddInstance(...), 
RayBufferRequirements(...),
IntersectionBufferRequirements(...),
OcclusionBufferRequirements(...)

 Host-side API

Update(...), UpdateInstance(...),
GetSceneAccessorString(...),
GetSceneAccessorBindings(...)

Setup
1. Create WebRays 
 Context

Init
1. Create ADS
2. Create Βuffers

Execute
1. Ray Generation
2. Wavefront Model
1. Megakernel Model

Update
1. Build ADS
2. Stitch & 
 Compile Shaders

QueryIntersection(...),
QueryOcclusion(...)

Device-side API

wr_QueryIntersection()
wr_QueryOcclusion()
wr_GetInterpolatedPosition()
...

Figure 3. Top: basic WebRays application control flow for wavefront and megakernel

ray tracing. Steps in black are common for both pipelines. Bottom: a summary of the

basic functions exposed by the WebRays API and how these map to each application

stage.

bindings. These design decisions help the intersection engine work closely with

the application and allow for maximum performance by keeping ray tracing

resources resident on the GPU every step of the way.

2.5 ACCELERATION DATA STRUCTURES

Geometry loading from external sources is left to application code, similar to

other modern APIs [2, 5]. WebRays is optimized for triangle meshes, which

constitute the most common geometric representation for 3D models. The API

supports two types of acceleration data structures (ADS): top-level (scene-wide)

acceleration structure (TLAS) and bottom-level (per-object) acceleration

structure (BLAS). A TLAS can contain one or more BLASs. Instancing is also

supported by inserting the same BLAS into the TLAS multiple times with

different transformation matrices.

The internals of the WebRays data structures are not exposed to the user. The

library internally allocates and deallocates GPU resources for triangle data. We

employ bounding volume hierarchies (BVHs) as acceleration data structures, as

they have proven their worth in terms of balanced performance and construction

cost. Specifically, we use a custom variant of a wide BVH [8], which has shown

good performance for incoherent rays.

3 PROGRAMMING WITH WEBRAYS

The basic control flow of a WebRays application is outlined in Figure 3. The

general steps are setup, init, update, and execute, all of which are determined by

the context of the intended execution model and algorithm.
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> Setup: The application gets a handle to the WebRays host-side API

functions (Section 3.1).

> Init: The ADSs based on the scene’s geometry are created (Section 3.2). In

case of wavefront ray intersections (Section 3.5), ray and intersection buffers

are also allocated and filled accordingly (Section 3.3).

> Update: The ADSs are actually built (or updated), and data is synchronized

between CPU and GPU memory (Section 3.2). In the case of megakernel

ray tracing, the dynamically created WebRays device-side API code must be

prepended to the user-provided fragment shader, before compilation.

> Execute: Rays are generated (Section 3.4) and their intersections handled

either within a viewport-filling rectangle draw pass (wavefront rendering) or

directly within the user fragment shader in the megakernel approach

(Section 3.6). After execution has finished, the resulting intersection data

can be used by the application in a multi-pass manner by repeating the cycle.

3.1 SETUP

For WebRays to function in the HTML document, users specify a canvas object

that will be enabled with WebGL capabilities at runtime. The WebRays API is

accessible via a single JavaScript file, loaded as usual:

1 <body >

2 <canvas id="canvas" width="640" height="480"></canvas >

3 </body >

4 <script src="webrays.js"></script >

Because all access to device-side rendering is handled via WebGL, one also needs

to access the WebGL context in one’s own script:

1 var gl = document.querySelector("#canvas").getContext("webgl2");

The intersection engine context is initialized by providing the newly created

WebGL context:

1 var wr = new WebRays.WebGLIntersectionEngine(gl);

From this point on, users can start using both the gl and the wr objects to

perform rasterization and ray tracing, respectively.
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3.2 POPULATING THE ACCELERATION DATA STRUCTURES

Before tracing any rays, a bottom-level acceleration structure must first be

constructed for the mesh geometry. In the following code, we assume that the

mesh has been loaded using an external library with the corresponding mesh class

providing access to the vertex, normal, and texture coordinate buffers, along with

their respective strides:

1 function build_blas_ads(mesh) {

2 let blas = wr.CreateAds ({ type: "BLAS" });

3 let shape = wr.AddShape(blas ,

4 mesh.vertex_data , mesh.vertex_stride ,

5 mesh.normal_data , mesh.normal_stride ,

6 mesh.uv_data , mesh.uv_stride ,

7 mesh.face_data);

8 return [blas , shape ];

9 }

Each vertex position and normal vector is a float[3] and each texture

coordinate pair a float[2]. For the index buffer, the API expects an int[4].

The xyz components contain the offsets to each of the triangle’s vertices within

the attribute buffers. The w component is user-provided and is always available

during intersections. This can be used to store application-specific data like

material indices, texture indices, and more.

The blas variable is an opaque handle that can later be passed to host-side or

device-side WebRays API functions in order to refer to this specific structure. The

user can add multiple shapes to a single BLAS. The returned shape variable is a

handle that is used by the engine to identify the specific geometry group within

the BLAS.

A TLAS is created similarly to a BLAS, but the user adds instances of existing

BLASs to the TLAS via their handles:

1 let blases = [];

2 let tlas = wr.CreateAds ({ type: "TLAS" });

3 for (mesh in meshes) {

4 let [blas , shape] = build_blas_ads(mesh);

5 let instance = wr.AddInstance(tlas , blas , mesh.transform);

6 blases.push(blas);

7 }

An instance’s transformation can later be updated using the returned instance

handle with the following code:

1 wr.UpdateInstance(tlas , instance , transform);

Up to this point, none of the provided scene geometry resources have been
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submitted to the GPU. The user must call the following function in order to

commit and finalize the created structures:

1 let flags = wr.Update ();

The returned flags indicate whether the device-side accessor code string or the

bindings were affected by the update operation. It is advised to call this function

every frame, as it does not incur an additional cost when no actual update is

required and it enables the programmer to react on a significant change.

For example, if the returned flags indicate a change in the device-side API, the

user is expected to get the new device-side API code as well as the updated

bindings using the following snippet:

1 let accessor_code = wr.GetSceneAccessorString ();

2 let bindings = wr.GetSceneAccessorBindings ();

The accessor code is a plain string that needs to be prepended to the user’s

shader code before compilation. Bindings are mostly relevant at program

invocation time during rendering.

3.3 RAY AND INTERSECTION BUFFERS

The ray structure declaration that WebRays uses internally resembles the one

described in the Ray Tracing Gems chapter “What Is a Ray?” [6]. Intersection

data use a packed representation and are not intended to be directly read by the

user. However, they can be passed to API functions within the shader in order to

get intersection-specific attributes. Occlusion data simply indicate if any

geometric object was found between the user-defined ray extents.

Ray buffers have memory requirements for two vec4 entries. Users are required to

fill two buffers corresponding to a vec4(origin, tmin) and a

vec4(direction, tmax) in order to submit rays for intersection. Intersection

and occlusion buffers use integer buffers. Because ray tracing commonly requires

high-precision arithmetic operations, the API provides helper functions to give a

hint to the user about which is the optimal storage and internal texture format.

1 let dimensions = [width , height ];

2 let ray_req = wr.RayBufferRequirements(dimensions);

3 let intersect_req = wr.IntersectionBufferRequirements(dimensions);

4 let occlusion_req = wr.OcclusionBufferRequirements(dimensions);

5 let origins = tex2d_alloc(ray_req);

6 let directions = tex2d_alloc(ray_req);

7 let intersections = tex2d_alloc(intersect_req);

8 let occlusions = tex2d_alloc(occlusion_req);
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The preceding code allocates two vec4 buffers for storing ray information and two

integer ones for storing intersection and occlusion results. The returned

requirement structure contains the type of the buffer along with the expected

format and dimensions. The engine supports both 1D and 2D buffers, depending

on the dimensions of the passed array. Note that 2D buffers fit naturally to image

synthesis. For example, in the current WebGL implementation, the most common

buffer type is backed by an appropriately formatted 2D texture. Thus, the

tex2d alloc call is an application helper function for allocating such buffers in

WebGL.

3.4 RAY GENERATION

Ray buffers can be populated either in the host-side JavaScript code or by

utilizing a GPU shader. Each design choice depends on the performance

characteristics of the application. The simplest and most efficient method to

populate ray buffers is by using the native graphics API. Because WebGL does

not have access to compute shaders, launching a shader for ray generation and/or

handling of intersection data on the device side is simply performed via a

fragment shader over a viewport-filling rectangle in a specific viewport matching

the ray batch size. Although one can fill ray data and read back intersections in

the host-side code via a read pixels operation, it is advantageous to always

perform such operations on the GPU.

For example in WebGL, the textured-backed ray buffers can be attached as render

targets in a framebuffer object, and ray properties can be written using a fragment

shader. This way, setting the ray direction, origin, and valid ray interval is trivial:

1 origin_OUT = vec4(origin , tmin);

2 direction_OUT = vec4(direction , tmax);

The newly populated textures can then be passed to WebRays as ray buffers for

intersection or used as input in any stage of the application’s rendering pipeline.

It is important to note that intermediate storage of rays is not a requirement in

order to perform intersections. Using the device-side intersection API, a ray can

be generated, intersected, and consumed within a single shader. A typical use

case is that of shadow rays (Section 4.3.2), where a new ray can be sampled and

queried directly within the shader with the result being accessible immediately.

3.5 HOST-SIDE INTERSECTIONS

WebRays offers host-side API functions for ray intersection and occlusion queries.

Intersection queries return closest-hit information encoded in an ivec4. Occlusion
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queries are useful for binary visibility queries. As expected, they are faster than

regular intersection queries, due to their any-hit termination criterion.

1 let rays = [origins , directions ];

2 wr.QueryIntersection(ads , rays , intersections , dimensions);

3 wr.QueryOcclusion (ads , rays , occlusions , dimensions);

The ads that the API expects is the same handle that is created on the host side

during acceleration data structure creation (Section 3.2). origins and

directions are the properly formatted and populated ray buffer textures,

whereas intersections and occlusions are appropriately formatted

intersection buffer textures (Section 3.3) that will receive intersection and

occlusion results, respectively.

Because in essence all these buffers are basic textures, the programmer can pass

them to shaders as regular uniform sampler variables. This way, users can bind

the already-filled intersection texture and apply application-specific operations in

parallel, on the GPU. This approach completely decouples intersection operations

from application logic, giving users full control of how they manage ray queries

and process the results. The same holds for the consumption of intersection

results.

3.6 DEVICE-SIDE INTERSECTIONS

The device-side API enables intersection queries within the shader as well as

access to geometric properties of intersected objects. For intersection queries,

WebRays provides two function variants, wr QueryIntersection and

wr QueryOcclusion. These take as a parameter the handle of a previously

created acceleration data structure ads. wr QueryOcclusion returns the result

of a visibility test, whereas wr QueryIntersection provides the closest

intersection point encoded in a single ivec4. This value can be subsequently

passed to other intersection-specific API accessor functions to obtain interpolated

position, normal, texture parameters, barycentric coordinates, etc.

The following shader code, which implements a basic renderer using ray casting,

demonstrates the usage of those two functions. Primary ray hits can either be

calculated in the shader (lines 8–10) or obtained from a previous separate shader

invocation (line 12). The ads uniform can be treated as a single int and passed

to the shader with the appropriate glUniform variant.

1 uniform int ads;

2 uniform sampler2D origins;

3 uniform sampler2D directions;

4 uniform isampler2D intersections;
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5 ...

6 ivec2 coords = ivec2(gl_FragCoord.xy);

7 // Case 1: Query primary ray intersections.

8 vec4 origin = texelFetch(origins , coords , 0);

9 vec4 direction = texelFetch(directions , coords , 0);

10 ivec4 hit = wr_QueryIntersection(ads , origin , direction , tmax);

11 // Case 2: Or obtain already calculated primary ray hits.

12 ivec4 hit = texelFetch(intersections , coords , 0);

13 ...

14 // Miss

15 if (! wr_IsValidIntersection(hit)) {

16 color_OUT = ...

17 return;

18 }

19 // Intersect

20 ivec4 face = wr_GetFace(ads , hit);

21 vec3 geom_normal = wr_GetGeomNormal(ads , hit);

22 vec3 normal = wr_GetInterpolatedNormal(ads , hit);

23 vec3 position = wr_GetInterpolatedPosition(ads , hit);

24 ...

25 // Shade intersected point

26 color_OUT = ...

4 USE CASES

This section describes how a number of fundamental and modern applications of

ray tracing to image synthesis can be implemented with WebRays. We

demonstrate how the versatile design and high-performance implementation of

WebRays can be used in pure ray tracing implementations (Sections 4.1 and 4.2)

as well as hybrid rendering (Section 4.3). Timings across several devices are

provided for all experiments in Figure 4, to give a feeling of the expected

performance. The complete source code of the WebRays examples is provided in

the accompanying repository of the book. The source code aims to get developers

started with WebRays, moving from trivially simple to moderately complex ray

tracing examples. Furthermore, we briefly describe Rayground (Section 4.4), an

interactive authoring platform for ray tracing algorithms based on WebRays.

4.1 AMBIENT OCCLUSION

Ambient occlusion is a non-physically-accurate illumination technique, highly

popularized in the games industry due to its relative simplicity and efficiency.

Using ray tracing, it can be estimated by stochastically sampling the visibility of

the shaded point over a hemisphere centered at its normal vector.

The following code demonstrates how WebRays visibility queries can be used to

estimate ambient occlusion in a fragment shader. The sample count corresponds

to the number of directions selected by importance sampling, and dmax the

near-field extent. The position and normal of the shaded point come from the
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nVidia RTX 2080

nVidia GTX 970

nVidia GTX 1060†

Scene

21 5.3 51 12.2 6.2 444.3

50 5.1 140 35.0 19.5 1473.0

60 5.8 188 41.0 25.0 1934.5

Intel HD 630† 290 34.2 626 131.0 93.0 61814.0

AMD RX 580 54 6.0 200 37.0 9.0 1925.0

Device

(triangles)

(35k) (143k) (143k) (109k) (51k) (4.6k) (123k)

Figure 4. Expected performance on a variety of desktop and laptop† GPU devices.

Timings show the total frame time, in milliseconds, of each use case, including shading,

intersections, and post-processing. Scenes are rendered at a native 1024× 768

resolution.

Figure 5. Monte Carlo integration in WebRays. Left: the Fireplace scene using ray

traced near-field ambient occlusion. Middle and right: a unidirectional path tracer

(trace depth 4) with next event estimation used for the Fireplace scene (middle) and the

ToyCar model (right).

previous ray casting example of Section 3.6, but they can be derived by other

means, such as a forward rasterization pass (Section 4.3). The shaded result using

the Fireplace scene and a near-field extent of 1.5 m is shown in Figure 5, left.

1 ...

2 float occlusion = 0.0;

3 for (int s = 0; s < sample_count; s++) {

4 vec3 direction = CosineSampleHemisphere(normal);

5 bool occluded = wr_QueryOcclusion(ads , position , direction , dmax);

6 occlusion += occluded ? 1.0 : 0.0;

7 }

8 occlusion /= float(sample_count);

9 // Ambient lighting visualization

10 color_OUT = vec4(vec3 (1.0 - occlusion), 1.0);
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4.2 PATH TRACING

Path tracing is an elegant method that estimates the integral of the rendering

equation using Monte Carlo simulation. It produces accurate photorealistic

images because all kinds of light transport paths are supported and sampled.

Using WebRays, a path tracer can be developed in either a wavefront or a

megakernel manner. Due to the lack of bindless resources in WebGL, materials

should be packed into a shared buffer and textures should be packed into a texture

atlas, in order to minimize texture bindings. In the following code, a unidirectional

path tracer with next event estimation is implemented using a wavefront

approach, where rays are generated using a pinhole camera and intersections are

resolved using the primitive and material ID of the intersected primitive.

1 [origins , dirs] = Generate(camera); // Get primary rays.

2 while(depth < depthmax) {

3 // Ray intersection test

4 wr.QueryIntersection (ads , [origins , dirs], hits , dimensions);

5 // Get new shadow and outgoing rays.

6 [origins , occ_dirs , dirs] = ResolveIntersections(hits);

7 // Shadow rays test

8 wr.QueryOcclusion(ads , [origins , occ_dirs], occs , dimensions);

9 // Compute local illumination.

10 ResolveDirectIllumination(hits , occs);

11 depth ++; // Increase path length.

12 }

The ResolveIntersections call is responsible for populating the next outgoing

ray buffer and the shadow ray buffer and is listed in the following code. This can

be done efficiently by launching a single 2D kernel. Using multiple render targets,

the kernel is responsible for populating the ray texture buffers. The last two

textures correspond to the shadow rays and the outgoing rays leaving the

intersection point. The first texture stores the ray origin, which is the same for

both rays.

1 vec3 wo = -direction_IN.xyz;

2 vec3 origin = wr_GetInterpolatedPosition(ads , hit);

3 vec3 normal = wr_GetGeomNormal(ads , hit);

4

5 float light_distance;

6 vec3 shadow_ray , wi;

7 LightSample(origin , /*out*/shadow_ray , /*out*/ light_distance);

8 BxDF_Sample(origin , wo , /*out*/wi , /*out*/ scattering_pdf);

9

10 direction_OUT = vec4(wi , tmax);

11 shadow_direction_OUT = vec4(shadow_ray , light_distance - RAY_EPSILON);

12

13 origin += normal * RAY_EPSILON;

14 origin_OUT = vec4(origin , RAY_EPSILON);
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After executing this kernel, the textures are forwarded to QueryIntersection

and QueryOcclusion respectively. Direct illumination is computed in

ResolveDirectIllumination based on the results produced from

QueryOcclusion and the bidirectional scattering distribution function BxDF of

the hit point.

1 vec3 origin = wr_GetInterpolatedPosition(ads , hit);

2 vec3 Li = LightEval(origin , light , wi, light_pdf , light_dis);

3 ...

4 vec3 Ld = vec3 (0.0);

5 int occlusion = texelFetch(occlusions , coords , 0).r;

6 if(occlusion == 0) {

7 vec3 BxDF = BxDF_Eval(origin , wo, wi);

8 Ld += throughput * BxDF * NdL * Li / light_pdf;

9 }

10 color_OUT = vec4(Ld, 0.0);

Figures 1 and 5 (middle and right) show how this efficient WebRays path tracing

implementation can be used to compute global illumination images for interior

and outdoor scenes.

4.3 HYBRID RENDERING

Rendering on the Web is usually performed using a rasterization-based pipeline

via either a deferred or a forward rendering approach. With WebRays, ray tracing

becomes available to both desktop and mobile browsers and can be used to

replace or complement some components of the typical rasterization pipeline,

enhancing the quality of the rendered image.

AMBIENT OCCLUSION

In real-time applications, either ambient occlusion is precomputed, for static

scenes, or near-field ambient occlusion is computed in real time, using

screen-space information stored in the G-buffer. Screen-space techniques, due to

their view-dependent nature, fail to capture occlusion from objects that are

offscreen or occluded by other geometric objects from the camera’s point of view.

Ray tracing can be utilized to compute accurate ambient occlusion without these

drawbacks. The shaded point’s position and normal can be reconstructed from

the G-buffer, and ambient occlusion can be estimated as described in Section 4.1.

SHADOWS

Ray-traced shadows provide accurate and crisp boundaries and can work in

complex lighting conditions such as arbitrarily shaped light sources. They offer a

superior method for shadow calculations than the prevalent method for computing
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Figure 6. Hybrid rendering in WebRays. Left and middle: accurate soft shadows in

the Tree and Mosaic scenes. Right: reflection and transmission events (trace depth 6)

captured in the Kitchen Table scene.

shadows in real-time graphics that uses shadow maps [1].

In a hybrid renderer, the shaded point position can be reconstructed from the

depth buffer, populated during the G-buffer rasterization or a depth prepass step.

Then, any number of occlusion rays can be cast toward the light sources and

checked for visibility.

1 // Shadow ray computation

2 vec3 origin = ReconstructPositionFromDepthBuffer ();

3 float distance;

4 vec3 direction;

5 LightSample(origin , /*out*/direction , /*out*/ distance);

6 // Shadow visibility test

7 bool occluded = wr_QueryOcclusion(ads , origin , direction , distance);

8 float visibility = occluded ? 0.0 : 1.0;

Occlusion queries are very fast as they terminate on the first encountered

primitive intersection. Alpha-tested geometry would require a more complex hit

kernel, where transparency of the hit point on the primitive should be taken into

account. Soft shadows can be easily computed by sampling directions toward the

light source surface area. Figure 6, left, presents soft shadows of thin geometry

produced from a distant light source, whereas in the middle of the figure, colored

soft shadows produced from a textured area light are demonstrated.

REFLECTION AND REFRACTION

Complex light paths resulting from reflected and transmitted light are very

difficult to compute using a rasterization pipeline. Ray tracing offers a robust way

to handle such difficult phenomena.

In a hybrid rendering pipeline, rays are spawned from the reconstructed position

from the depth buffer toward a random direction inside the reflection or
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transmission lobe defined by the material properties and traced into the scene.

Each hit point is then evaluated and shaded, and a new ray is spawned and traced

into the scene. This recursive procedure is usually performed up to a maximum

number of iterations depthmax based on the number of light paths that the

specific scenario requires. An example using WebRays is presented in the

following code, where the recursive procedure is performed inside a single shader

and rays are traced using the in-shader API call wr QueryIntersection. Each

hit point is evaluated and a new ray is spawned, or the procedure terminates in

the event of a miss. Accurate reflection and transmission results from the above

shader are presented in Figure 6, right.

1 // Geometry information computation

2 vec3 position = ReconstructPositionFromDepthBuffer ();

3 vec3 normal = ReconstructNormalFromGBuffer ();

4 BxDF bxdf = ReconstructMaterialFromGBuffer ();

5 vec3 wo = normalize(u_camera_pos - position);

6

7 // Compute new ray based on the material.

8 vec3 wi, throughput = vec3 (1.0), color = vec3 (0.0);

9 Sample_bxdf(bxdf , normal , wo, /*out*/wi, /*out*/ throughput);

10

11 while(depth < depthmax) {

12 ivec4 hit = wr_QueryIntersection(ads , position , wi , tmax);

13 if (! wr_IsValidIntersection(hit)) { // Miss

14 color += throughput * EvaluateEnvironmentalMap(wi);

15 break;

16 }

17 else { // Surface hit

18 position = wr_GetInterpolatedPosition(ads , hit);

19 normal = wr_GetInterpolatedNormal(ads , hit);

20 bxdf = GetMaterialFromIntersection(hit);

21 wo = -wi;

22

23 vec3 Ld = EvaluateDirectLight(position , normal , bxdf , wo);

24 color += throughput * Ld;

25

26 Sample_bxdf(bxdf , normal , wo , /*out*/wi, /*out*/ throughput);

27 }

28 depth ++;

29 }

30 color_OUT = color;

4.4 RAY TRACING PROTOTYPING PLATFORM

WebRays has been deployed at the core of the Rayground platform, which is

hosted at https://www.rayground.com. The Rayground pipeline offers a

high-level framework for easy and rapid prototyping of ray tracing algorithms.

More specifically, it exposes one declarative stage and four programmable ones. In

the declarative stage, users describe their scene using simple shape primitives and

material properties. The scene is then submitted to WebRays in order to build

and traverse the acceleration data structure. The four programmable stages are
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Figure 7. Left: the Rayground interface, with the preview window and the shader

editor. Right: two representative ray traced projects created online on this platform:

Whitted ray tracing and stochastic path tracing.

the standard generate, hit, miss, and post-process events. The graphical user

interface consists of two discrete sections, the preview window and the shader

editor. Visual feedback is interactively provided in the preview canvas, and the

user performs live source code modifications as shown in Figure 7.

5 CONCLUSIONS AND FUTURE WORK

We have presented WebRays, a GPU-accelerated ray intersection framework able

to provide photorealistic 3D graphics on the web. The versatile design of

WebRays allows it to adapt to a broad range of application requirements, ranging

from simple intersection queries to complex visualization tasks.

Admittedly, the low-level nature of the API requires a good amount of boilerplate

code from the user. In the future, we intend to provide wrapper abstraction APIs

that model more constrained yet popular programmable ray tracing pipelines.

Keeping an eye toward future advances on Web-based accelerated graphics, we

plan to offer a WebGPU backend implementation of WebRays, as soon as the

latter becomes available to browsers, in order to provide a standard way to express

ray tracing ubiquitously, so it ultimately benefits the entire 3D online graphics

industry.
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