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Figure 1: (a) A consistent colorization of five representative (b) random painted partitionings computed from each pose. (c) Our
segmentations are superior in terms of (e) skinning error when compared to prior art ((d) illustrated segmentations of [SY07]) in
most of the testing resolutions. Skinning weights computed from the smallestsegmentation are also shown.

Abstract

We present a complete approach to efficiently deriving a varying level-of-detail segmentation of arbitrary animated
objects. An over-segmentation is built by combining sets of initial segments computed for each input pose, followed
by a fast progressive simplification which aims at preserving rigid segments. The final segmentation result can
be efficiently adjusted for cases where pose editing is performed or new poses are added at arbitrary positions
in the mesh animation sequence. A smooth view of pose-to-pose segmentation transitions is offered by merging
the partitioning of the current pose with that of the next pose. A perceptually friendly visualization scheme is also
introduced for propagating segment colors between consecutive poses. We report on the efficiency and quality of our
framework as compared to previous methods under a variety of skeletaland highly deformable mesh animations.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages, and systems I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation

1. Introduction

Segmentation of mesh animations, despite being a new
research field when compared to static mesh partition-
ing [Sha08], has become a key issue in a number of computer
graphics applications. Animation compression [AS07],
skinning mesh animations [JT05, KSO10, LD12], skeleton
extraction [SY07, DATTS08, HTRS10], deformation trans-
fer [LWC06] and ray tracing [GFW∗06] are representative
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applications enabled by partitioning adeforming mesh
sequence: a surface mesh with dynamic geometry but fixed
connectivity. Mesh animations can be roughly divided into
two categories: (i)off-line which consists of a fixed number
of stored consecutive animated meshes and (ii)real-time
which is either streamed from a shared distributed virtual
environment or dynamically generated from interactive
manipulation of a deformable object.

While the output depends on the type of application, the
main goal of segmentation is to partition the animated mesh
into regions with similar motion characteristics. Many geo-
metric properties have been proposed for defining the feature
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space. Significant features, which form a dense region in fea-
ture space, can be detected by one of the numerous available
clustering techniques. From now on, we denote such ap-
proaches asglobal segmentationmethods, because they work
with average motion measures that represent the degree of
deformation during the entire animation sequence. However,
these methods are rather limited in cases where the feature
vector space is either (i)flat: unable to separate regions with
similar feature values (zero-variance) or (ii)anisotropic: one
or more features dominate the others due to higher variation.

Regardless the clustering criteria, current methods focus
on detecting segments with mostly rigid behavior, failing in
partitioning correctly highly-deformable objects. In addition,
the segmentation output highly dependents on a large set of
parametersthat should be determined a priori. Finally, the
entire process cannot be carried out when the user requests
a different segmentation resolution or the mesh sequence is
modified[CH12]: either being (i) subjected to pose editing
operations or (ii) augmented with additional poses that did
not exist in the original mesh animation.

p0 pk-1 pk 

noisy 

 segments 

M[k-1,k] 

Figure 2: Illustrating the extra segments created when two
consecutive pose partitionings are successfully merged.

We introduce a generic framework for efficiently gener-
ating multi-resolution segmentations that account for both
articulated and highly-deformable mesh animations. Based
on the observation that only a limited part of the surface
region is modified from frame-to-frame, we build anover-
segmentationby combining precomputed per-pose partition-
ings. The desired segmentation resolution is dynamically
determined by the user by applying a fast refinement process
which aims at cleaning insignificant or “noisy” segments cre-
ated when successive partitionings are merged (see Figure2).
Contrary to global segmentation methods, our pipeline
can handle both off-line and real-time mesh animations by
exploiting different merging strategies (see Figure3(a),(b)).
Despite the independent per pose partitioning, a consistent
segmentation is maintained over time (also known asvariable
segmentation[ACH∗13]) by merging the partitioning of the
current pose with that of the following one (see Figure3(c)).
Thus, each segmentation is similar to the one in the previous
step and accurately reflects the new data arriving [CKT06].
Finally, a novel visualization scheme is introduced that
provides perceptual consistency between consecutive poses.

2. Related Work

A large variety of 3D mesh segmentation algorithms using
different partition criteria has been introduced the last few

M[1,8]
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Figure 3: Three different ways of joining a sequence of
partitionings: (a)off-line, (b) real-timeand (c)variableseg-
mentations. M[x,y] denotes the over-segmentation between
[px, . . . , py] poses.

years in the literature [Sha08]. Most of them are targeted on
partitioning static objects into either meaningful volumetric
components (part-typesegmentation) [DGGV08] or surface
patches (surface-typesegmentation) [JKS05], depending on
the application. Recently, several approaches adapted pre-
vious segmentation algorithms to work with 3D deforming
meshes exploiting the analysis of the motion information.

[DIHF12] utilized multi-source region growing
algorithm based on similarity of statisticalvariability
characteristics to favor grouping between surface regions.
Similarly, [LWC06] partitioned a mesh sequence into clusters
with similar rigid motion by growing feature clusters based
ongeodesicanddeformationdistances. [KMD∗07,KSO10]
useduniform distributionanddeformation gradients[SP04]
to initialize their skinning decomposition, respectively.

[LD12] replaced previous clustering method withK-
meansand used bonetransformation matricesas assignment
attribute. [AS07] further employed K-means based on the
local similarity between thetrajectoriesin a cluster-defined
coordinate system to assist their compression method.
When the number of resulting clusters is unknown a priori,
mean-shift clustering was applied based onrotation matri-
ces[JT05] andgeometric invariantfeature vectors [LXL ∗12]
to segment animated objects into near-rigid components.

[SY07] and [WPP07] derived abottom-up hierarchical
clustering by merging (initially per facet assigned) clusters
until one node is remained based onrigid andaffine transfor-
mationmetrics, respectively. Conversely, [GFW∗06] applied
a top-down hierarchical approach to break mesh down into
sub-meshes with similaraffine motion. Starting from one
cluster which represents the entire object, a partition is cre-
ated by segmenting it into two or more components. On the
other hand, [ACH∗13] proposed to incrementally refine the
final segmentation as a new pose arrives by splitting current
components into parts which present consistentrigid motion.

Recent work by [DATTS08] and [HTRS10, ACH∗13]
exploitedspectral clusteringto segment a deformable mesh
into approximately rigidly moving groups usingeuclidean
distanceandrotation anglesimilarity metrics, respectively.
Moreover, [FKY∗10] used spectral clustering for effective
curvilinear feature and deformation discontinuity detection.
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Figure 4: Diagram of the proposed pipeline.

Finally, [WB10] produced a near-rigid segmentation finding
the minimum spanning tree of the mesh’s dual graph
weighted bydihedral anglesof neighbor faces.

Similarly to our method, co-segmentation tech-
niques [HFL12] may be adjusted to consistently partition a
sequence of animated poses. However, they perform relative
slow, they do not support pose editing as well as they are lim-
ited to work only on quasi-rigid animations with fixed frames.

3. Framework Overview

We present a general method to efficiently segmenting
arbitrary mesh animations involving two main steps. An
over-segmentation is first constructed by combining a set
of individual partitionings corresponding to each input pose
of the animation sequence. Partitioning of each pose is
precomputed in parallel using any of the numerous available
feature measures and clustering methods (Section3.1). A
pose partitioning feature(usually a deformation measure) is
computed from an animation pose and a reference pose. A
progressive simplification process is subsequently applied to
refine the segmentation graph guided by a temporal-coherent
area-aware edge collapsing technique (Section3.2). An
example ilustrating the overall information flow and the
individual steps of our method is shown in Figure4.

3.1. Pose partitioning-aware over-segmentation

Let M be a mesh of fixed connectivity represented by a graph
M = (V,E), whereV is the set of vertices (|V| = n) andE
is the set of edges. Letpi : E 7→ R3 be an assignment of 3D
values to the vertices that corresponds to posei in an anima-
tion sequenceA= (p0, p1, p2, . . . , pk)with kanimation poses
p1, p2, . . . , pk and a rest-posep0. Let Ci(M), i = 1, . . . ,k be
a partitioning (clustering) ofV, such that each subset cor-
responds to a connected induced sub-graph ofM. Ci(M) =

{C0
i , . . . ,C

l
i } represents the resulted clusters based on posepi .

Definition 3.1We define a clustering animation vector (CAV )
for each vertexv ∈ V such thatcav(v) = (m1,m2, . . . ,mk),
wherecav(v)[ j] = mj ∈ 1, . . . , |Cj (M)| is the cluster index
thatvbelongs to in posep j . Similarly,cav(v)[i, j] is the vector
of cluster indices wherevbelongs to in posespi , pi+1, . . . , p j .

Definition 3.2 Let NSi (neighbor similarity) for animationA
be a binary relation between vertices. We say that for two ver-
ticesu NSi v if and only ifcav(v)[1, i] = cav(u)[1, i]∧((u,v)∈
E ∨ u = v). Clearly,NSi is reflexive and symmetric for all
i ∈ [1, . . . ,k]. By taking the transitive closure ofNSi , denoted
by TNSi we have an equivalence relation. The equivalence
relation partitionsV in equivalence classes.

Definition 3.3 The over-segmentation OS(A) of A over
Ci(M), i = 1, . . . ,k is a partitioning ofV in equivalence
classes called segments based on the transitive closure of the
binary relationNSk. Then, we denote bysegment(v, i), the
segment (equivalence class) wherev belongs based on the
equivalence relationTNSi . For i = k, we obtain segments of
the final over-segmentationOS(A). For otheri < k, we ob-
tain the corresponding segment that is produced by the over-
segmentation ofOS(p0, p1, . . . , pi).

Property 3.4 segment(v, j)⊆ segment(v, i), i ≤ j

Proof Fori = j, the two segments are identical, since we have
equivalence classes. Fori < j, let vertexu ∈ segment(v, j),
then there is a path betweenu andv, and for every vertexw
in the path it holdscav(w)[1, j] = cav(v)[1, j]. Then, for all
verticesw in this path fromu andv, it holdscav(w)[1, i] =
cav(v)[1, i]. So,u∈ segment(v, i).

Immediate from the property above is that
segment(u1, i) = segment(u2, i), for all vertices
u1,u2 ∈ segment(v, j), i < j. Thus, we may denote this
new segment bysegment(segment(v, j), i).

To algorithmically obtain the segments of the over-
segmentation (equivalence classes ofOS(A)), we can easily
prove that this is equivalent to detecting for a vertexv the
maximal connected induced sub-graph ofM wherev belongs
and all its vertices have the same CAV. To compute the
over-segmentation, we consider each vertex and perform a
pruned breadth-first-search to detect connected vertices with
the same CAV. During this process, we mark each edge so
that we will not visit it again. This takes timeO(|E|) which
for regular non-manifold objects isO(|V|) = O(n). The
details of this algorithm are shown in Algorithm1. Figure5
illustrates the CAV generation for all clusters of the resulted
over-segmentation created from three pose partitionings,
where cav(Sj ) corresponds to the CAV of segmentSj
(vertices belong to same segment have the same CAV).

3.2. Progressive decimation of over-segmentation

Following the generation of the over-segmentation, we per-
form a cleaning with parameterh∈ [0,1] calledp2p-cleaning
(pose-to-pose cleaning) starting from posepk, then for pose
pk−1 towards the first animation posep1. Each cleaning op-
erationRi(h) on posepi is based on the followingreduction
rule: Given a posepi and a pair of segments(SA,SB), SB
absorbsSA if and only if the following holds forSA:

a(SA)≤ h ·a(Ccav(SA)[i]
i ) (1)

a(SA)≤ h ·a(segment(SA, i −1)) (2)
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Figure 5: Illustrating the CAV for each vertex and segment created fromjoining three pose clusterings C1, C2 and C3. The over-
segmentation graph OS(A) is decimated only at the edges {e01,e45,e02,e34} which satisfy the temporal-coherent reduction rule.

Algorithm 1 Over-segmentation(A)

1: OS(A)←⊘; VL← list of all vertices inV;
2: kmax← 0;∀v∈V : v.segment←−1;
3: Mark all edges as not visited;
4: while VL 6=⊘ do
5: v←VL.next;
6: if v.segment==−1 then
7: Skmax←{v}; v.segment← kmax;
8: k← kmax; kmax← kmax+1;
9: else

10: k← v.segment;
11: end if
12: for eachnot visited edgeei ← (v,vi) do
13: Mark edgeei as visited;
14: if cav(v) == cav(vi) then
15: Sk← Sk∪{vi};
16: vi .segment← k;
17: end if
18: end for
19: Remove vertexv from listVL;
20: end while
21: OS(A) = {S0,S1, . . . ,Skmax−1};

andSB is a segment such that,

SB ∈ N(SA)∧cav(SA)[1, i −1] = cav(SB)[1, i −1] (3)

∧cav(SA)[i] 6= cav(SB)[i]

a(SB)> a(SA) (4)

where N(Sj ) are all neighbor segments ofS in the final
over-segmentation anda(Sj ) is the area of segmentSj .
Note that after the reduction, the area of the new cluster is
considered for the purposes of reductions in this pose to be
this of the absorbing clusterSB.

The conditions forSB (3 and 4) state thatSB is the largest
neighbor ofSA (larger thanSA) in the over-segmentation
and they belong to the same cluster in all poses fromp1 to
pi−1 and to a different cluster in posepi . This means thatSA
andSB were split to represent separate segments in posepi .
Thus, we need to check whether one of them was erroneously
created due to small cluster border differences, and should
therefore be absorbed by the other. This is checked by the two
conditions forSA. The first condition ensures thatSA is small
as compared to the cluster that contains it in posepi , thus it
is not a significant part of a segment at posepi . The second
condition states thatSA is small as compared to the superset
of segmentSB in posepi−1 and they have been split into two
or more parts in posepi . This corresponds to a segment of
the over-segmentation of the animation(p0, p1, . . . , pi−1)
and at this phase is a candidate group of clusters (including

SA andSB) to become one (or more) independent meaningful
segment(s) after cleaning.

This reduction rule exploits temporal coherency, which
means that we can perform an educated reverse pose-to-pose
cleaning of non meaningful clusters preserving useful
deformation information. We have explored global rules (not
per pose) and we have observed that they tend to favor larger
clusters without respecting other cluster characteristics. This
fact makes them inappropriate for mesh segmentation of an-
imation sequences. Figure5 illustrates the possible reduction
steps applied to an over-segmentation graph when our p2p-
cleaning is employed. Note that from all potential collapsing
edges, only four satisfy our history-based condition.

The details of this algorithm is shown in Algorithm2.
The initialization takesk steps. At each step it takesO(n), to
initialize the areas, to build the graph of adjacent segments,
and to reconstruct the partial over-segmentation. Then, with
careful updating of visited edges in the segment neighbor
graph we are able to carry out each step at timeO(r),
wherer = |OS(A)|. Thus, the cleaning process takes time
O(k(n+ r)). The following substantiates the correctness of
the p2p-cleaning process.

Lemma 3.5The p2p-cleaning process will have a unique re-
sult in a finite number of steps.

Proof Since we reduce the number of segments by one at each
step, the p2p-cleaning process may take at most|OS(A)| re-
duction steps overall for all poses. Next, we shall prove that
at each pose, we obtain a unique segmentation which is not
affected by the order in which we apply the reductions. We
can think of the cleaning process as a rewrite system, which
will have a unique eventual result. More specifically, we will
prove that the reduction rules are compliant to theChurch
Rosserproperty. Thus, if at some step of the cleaning process
at posepi , we have a partially cleaned over-segmentationL
and we have two candidates: a reductionRi(SA,SB) yielding
a new over-segmentationQ and a reductionR′

i (S
′
A,S

′
B) yield-

ing a new over-segmentationQ′, then it suffices to prove that
there is a sequence of reductions fromQand a sequence of re-
ductions fromQ′ so that we obtain the same partially cleaned
over-segmentation configurationU (see Figure6(top,left)).
Figure6 illustrates how a portion of the over-segmentation
at posepi is build when theCi (painter with red) breaks the
existing segments of the over-segmentation of the animation
(p0, . . . , pi−1) (painted with green) into one or more com-
ponents. Since this is always a partitioning, we distinguish
among the following cases:

1. SA, SB, S′A andS′B are four disjoint sets (for exampleSA =

c© 2014 The Author(s)
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cc, SB = cd, S′A = cb andS′B = ce), in which case we can
always carry out the other reduction, and reach the sameU .

2. If we have two pairs of identical sets then this is the same
reduction, since this is only feasible whenSA = S′A and
SB = S′B.

3. There is just one pair of identical sets. Then, we cannot
haveSA = S′A since only one of the two reduction would
have been eligible. If we haveSB = S′B (for example
SA = cb, SB = S′B = ce, S′A = ce), then if S′A is absorbed
by S′B = SB then the new cluster will also absorbSA and
vice versa. It remain to consider the case wereSA = S′B
(or S′A = SB). For exampleSB = ce, SA = S′B = cd and
S′B = cc. If we carry out firstRi(SA,SB), the new area of the
merged cluster will be the one ofSB which by definition
is larger thanSA, thus the other reductionR′

i (S
′
A,S

′
B)

will still be eligible. If R′
i (S

′
A,S

′
B) is carried out first then

the new merged cluster will have the area ofSB = S′A,
therefore it will be still eligible to be absorbed byS′B.

a(cb)<h·a(cB), a(cb)<h·a(cG)

a(cc)<h·a(cC), a(cc)<h·a(cG)

a(cd)<h·a(cD), a(cd)<h·a(cG)

a(cc)<a(cb), a(cd)<a(ce)

a(cc)<a(cd)

L
Q

Q’
U

cG

cB

cC

cF

cE

cf

cd

cD

cc

ce

cb

Figure 6: Illustrating the correctness proof: In this example,
we close up at the reduction that will restructure the green
clustercG, which belongs to the over-segmentation until pose
pi−1, when is decomposed by the red partitioning ofpi . For
smallh, segmentsce andcd will absorbcf andcc.

4. Applications

4.1. Smooth Visualization of Cluster Transitions

Since clusters may vanish, shift or arise when moving
through time, we introduce a perceptually friendly visualiza-
tion scheme to propagate as much as possible the segment
colors between consecutive frames. A user should perceive
the transition from one frame to the next one avoiding if
possible to encounter totally different coloring of clusters.
We follow a strategy that aims at covering a high distribution
of the color space minimizing the possibility of “close”
colors be assigned to neighbor clusters. The algorithm starts
by initially painting the partitioning of the first pose, followed
by a propagation of the cluster colors from pose to pose.

Rest-pose coloring. A breadth-first traversal is applied by
picking a random cluster as root node. At each node visit, we
set the next color from the palette shown in Figure7 that does
not conflict with an assigned color from its neighborhood.
A 2-ring neighborhood can also be used to increase color
distribution. The palette is anRGB color wheelwith 12
divisions: an illustrative organization of color hues around

Algorithm 2 p2p-Cleaning(OS(A),h)

1: for p← k,1 do
2: OS(A).computeArea();
3: for eachSA ∈ OS(A) do

4: if Clean(SA,C
cav(SA)[p]
p ,h, p) then

5: maxArea← a(SA);
6: for SB ∈ N(SA) do
7: if maxArea< a(SB) and cav(SA)[1, p− 1] ==

cav(SB)[1, p−1] and cav(SA)[p] 6= cav(SB)[p] then
8: maxArea← a(SB);
9: end if

10: end for
11: if maxArea> a(SA) then
12: SB.Copy(SA); ⊲ neighbors,vertices,faces
13: comment:Leavea(SB) unchanged
14: OS(A).Remove(SA);
15: end if
16: end if
17: end for
18: end for

19: function CLEAN(SA,SP,h, p)
20: if a(SA) > h ·a(SP) then
21: return false;
22: end if
23: SL = new List<Vertex>();
24: comment:The following is realized with a breadth
25: first search fromSB (similar to Algorithm1)
26: for eachv∈ segment(SA, p−1) do
27: SL.Add(v);
28: end for
29: return a(SA)≤ h ·a(SL);
30: end function

a circle that consists of the primary:{red,green,blue}, sec-
ondary:{cyan,yellow,magenta} and tertiary colors:{colors
between primary and secondary ones}. Note that comple-
mentary colors lie opposite to each other in the color sphere.
In case of color overflow (chromatic number of the cluster
graph> 12), a larger ring of colors should be used.

Violet(7) Azure(6)

Rose(8)

Orange(9) Chartreuse Green(10)

Spring Green(11)

Red(5)

Cyan(2)

Yellow(0) 

Green(1)

Magenta(4)

Blue(3)

Figure 7: RGB color wheel. Color order is shown in brackets.

Pose-to-pose color propagation. A new future-clusterini-
tially computes how much area covers from each of its over-
lappingpast-clustersin linear time. A breadth-first traversal
is afterwards applied picking as root the cluster with the
largest covering area. Each future-cluster inherits the color
of the first of its past-clusters (sorted by the overlapping area)
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that is not covered by any of the rest of the future-clusters.
Note that this color must not conflict with any previously
assigned color from its neighborhood. If a future-cluster
covers only one past-cluster and cannot inherit any color, we
assign it the next available color from the palette. Otherwise,
we use a mixed color of its two largest covering past-clusters.

To avoid the following problems that arise when mixing
neighbor cluster colors during the color propagation phase:
(a) producing a color slightly different from the existing ones
and (b) giving a neutral grey color, we propose (a) changing
the cyclic traversal order of colors and (b) assigning to a
cluster a color that is non-complementary with respect to the
neighbor clusters.

Figures1(a),8(b),11(a), and12(a) illustrate the perceptual
intuitiveness of our color propagation scheme when moving
throughout the sequence. The same algorithm can also be
used for any segmentation pair without the need of history
context. Thus, we have applied this approach to demonstrate
the color transition results between (a) the variable segments
and (b) the variable resolution segments obtained by our
method. Finally, Table1 shows its interactive nature when
rendering several clustering sequences (from the high-detail
elephant gallop (188 fps) to the low-detail hand animation
(715 fps)).

4.2. Real-time Segmentation

Our framework can efficiently handle segmentations of
streamed or dynamically created mesh animations without
the need of downloading the pre-processed animation frames
for off-line segmentation. This is a key feature that is not
offered by previous approaches. The idea is to merge the
newly “arrived” pose partitioning with the segmentation
resulted from joining the partitionings of all previous poses
(see Figure3(b)).

Figures8(a) and11(b),(c) provide thorough examples of
incrementally merging a number of pose partitionings to
generate the final segmentation of real-time mesh animations.
Observe that cluster-refinement is omitted at each frame in
Figure8(a). On the other hand, the intermediate segmenta-
tions are enhanced by the cleaning procedure in Figure11(c).

4.3. Variable Segmentation

We consider the problem of clustering data over time, main-
taining simultaneously two conflicting criteria: (a) remain
faithful to the past-data and (b) effectively alter when moving
on to future data. This application is helpful to detectmotion
changesat each time step, contrary to the information ex-
tracted by traditional segmentation methods desired for sub-
sequent shape analysis and geometry processing applications.

Despite clustering independence between individual
successive poses, we offer users with a smooth transition
between pose-to-pose clusterings, by joining the optimal
partitioning of the current pose with that of the next pose
(see Figure3(c)). Due to the small number of resulting
clusters, cleaning can be avoided. Our method is highly
efficient when compared to previous variable segmenta-
tion methods (evolutionary versions of classic clustering

methods [CKT06] and splitting/merging operation on the
past-clustering [ACH∗13]) and can achieve interactive
performance when a fast per-pose clustering is employed
(for computation times see Table1). Figures8(c) and12(b)
include variable segmentations of a cloth simulation and a
dance animation, respectively. Observe that the temporal
consistency is better preserved when the joined clustering se-
quence is used as compared to the individual pose clusterings.

4.4. Multi-resolution Segmentation

Contrary to bottom-up and top-down hierarchical clustering
methods which can only merge or only split clusters to reach
the desired segmentation solution, we provide users with an
interactive tool to adapt resolution of the final segmentation.
As discussed above, our approach aims at cleaning small-
area clusters which usually correspond to highly-deformable
regions. Starting from a noisy over-segmentation, users
can efficiently simplify it by adjusting theh parameter.
Intuitively, the moreh is increased, the larger the parts to be
removed. However, they are upper-bounded by the resolution
of the initial over-segmentation.

Figures 1(c) and 12(c) illustrate how the rigidity in
the segmentation is preserved when the level of detail is
decreasing. Table1 shows the performance efficiency of the
p2p-cleaning process for various mesh animations. Note that
this process does not depend on mesh geometry size.

4.5. Combine Segmentations of Mesh Animations

Except from joining pose partitionings to derive a final
segmentation, our framework can easily combine different
segmentations of one or more mesh animations. Note that
our approach can only work when a bijective vertex mapping
between the animations has been established.

Figure9 illustrates thesegmentation transferoutput be-
tween individual mesh animations. This is very helpful since
animators may avoid the burdensome manual work of produc-
ing the intermediate result. The global segmentation of each
animation produces a better partitioning of each movement
leading at a superior merged segmentation when compared
to the one derived from joining both animations. This is due
to the reduced multi-modal distribution of the feature space
computed from the motion of the merged animation.

4.6. Modifying Mesh Animations

Using our framework, we can avoid the segmentation
re-computations when the user performs editing or extending
operations on the original animation sequence [CH12]. Since
the over-segmentation result does not depend on the joining
order, we can simply join the new partitioning (from the
edited or the added pose) with the final segmentation of the
original animation.

Figure10 illustrates how a segmentation, computed from
merging clusterings of an initial set of flamingo poses, is
adjusted to reflect the motion of two newly added poses.
On the other hand, Figure11(c) demonstrates how the final
segmentation of a mesh animation is efficiently altered
when pose editing is performed. For clarity, we provide
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(c) variable segmentation of mesh animation 

(d) our method {h} 

(b) pose partitioning of mesh animation (e) [KSO10] 

185 167 131 101 67 53 22 12 8 2 1 

(a) real-time segmentation of mesh animation 

(f) skinning error (ERMS) 

23 

9.88 

14.8 

(d) 

(e) 

23  

{0.05} 

Figure 8: (a) Real-time segmentation construction process. (b) Pose partitioning enhanced by our color propagation scheme. (c)
Variable segmentation. (d) Our output is superior in the context of (f) skinning error when compared to (e) the one of [KSO10].

(g) our merged 

segmentation 

feature 

(a) 1st mesh animation 

(b) 2nd mesh animation 

(c) merged mesh animation 

 [GFW06] 

(h) skinning error (ERMS) 

0.814 

1.174 

(g) 

(f) 

(d) 

(e) 

(f) 

15 

5 

20 

20 

Figure 9: Merging (d),(e) the global segmentations from [GFW∗06] of (a),(b) two individual mesh animations. (h) We observe
the skinning error superiority of (g) our merged segmentation when compared with (f) the global segmentation [GFW∗06] of (c)
the animation created by merging both animations.

the intermediate steps of the incremental merging strategy
despite the fact that the same segmentation can be produced
by merging the partitioning of the edited poses with the final
segmentation of the original animation.

(a) initial pose dataset (b) add pose (c) add pose 

Figure 10: (a) Final segmentation constructed by joining 8
initial pose partitionings. The segmentation is refined after
adding (b) initially a new pose, (c) followed by a second one.

5. Experimental Study

We evaluate our proposed segmentation technique with
respect to performance and quality under a broad set of
testing inputs. These include rigid, highly-deformable and
hybrid mesh animations. Table1 summarizes the geometry
properties and clustering details for each animation. For
more segmentation results, we refer readers to watch the

accompanying video. The experiments were performed on
an Intel Core i7 870 @2.83GHz CPU using multi-threaded
implementation.

A variation of a top-down hierarchical clustering tech-
nique [GFW∗06] is used in our experiments for primary
pose-decomposition. Rotation angles, extracted from the de-
formation gradients [SP04] computed with respect to the rest-
pose, define the one-dimensional feature space. We compare
our segmentation results with the ones derived by a variety
of widely-accepted global segmentation methods using the
same number of desired segments. This is accomplished by
accurately adjusting the value ofh. Without loss of generality,
we have used uniform seeding and the same number of iter-
ations (5) for all clustering algorithms and 1% of the vertices
are used as initial input for spectral clustering [DATTS08].
Finally, K-means [LD12] and spectral clustering [DATTS08]
may result in segments with several disconnected compo-
nents when segmenting non-rigid animations making these
results unable to support several graphics applications.

5.1. Performance Analysis

Table 1 presents a comparative performance overview
of the intermediate steps employed by our framework to
produce a final segmentation. The computation times for
all steps exhibit a linear behavior on the mesh geometry
size, which is consistent with our time complexity analysis.
Furthermore, note how the over-segmentation and cleaning
performance scales linearly when the number of per-pose
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5 

(a) pose partitioning of mesh animation 

edited 

pose 

edited 

pose 

(b) real-time segmentation of mesh animation 

(c) real-time segmentation of edited mesh animation 

(d) our method (5) 

10 51 120 175 261 359 449 584 

10 16 26 28 30 32 35 38 

(f) [DATTS08] 

(h) skinning error (ERMS) 

18 

18 

0.497 
0.406 

0.568 
0.705 

0.459 
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(e) our method (10) 

{0.02} 

{0.08} 

Figure 11: (a) Smooth visual transitions of the pose partitionings with 5 and 10 components. Editing operations are highlighted
from the partitioning of the modified poses. Intermediate real-time segmentation steps (b) before and (c) after editing is applied.
(d),(e) Contrary to our refined segmentations, (f) output of [DATTS08] results at wrongly decomposing non-animated areas.

segments increases at the elephant mesh animation. The
efficiency of our framework is constrained by the individual
pose decompositions which take more that 90% of the total
computation time. Finally, note that we cannot support
interactive performance for segmenting mesh animations
when the top-down hierarchical clustering is used. Moving to
multi-source region growing [KSO10] as initial partitioning,
we achieve 6 fps when real-time segmenting the hand
animation (Figure1). A GPU-accelerated clustering may be
explored as an alternative to speed up performance.

Figure12(f) shows that our algorithm is better in terms
of performance when compared to a variety of global
segmentations. This is due to the fact that segmentations that
explore spectral clustering [DATTS08] or skinning transform
matrices [GFW∗06, SY07, LD12] as motion characteristic
suffer from high computation times. Mean-shift clustering
aware methods [JT05, LXL ∗12] should also be avoided
to produce fast global segmentations. On the other hand,
region-growing [KSO10] is faster than our method in low
resolutions. However, this comes with the price of limited
quality of the generated partitions. Contrary to prior art, our
method is only slightly affected when changing from one
segmentation resolution to another one.

5.2. Quality Analysis

Contrary to static meshes where several definitions and
metrics have been introduced to define optimal segmen-
tation depending on the application objective [CGF09], a
framework for the objective evaluation of segmenting mesh
animations is missing. Intuitively, when mesh movement is
defined as a function of an underlying skeleton, the segmen-
tation objective is to partition the surface into meaningful

volumetric parts. On the other hand, segmentation of a
highly-deformable object is targeted at decomposing the
mesh into surface patches with similar motion characteristics.

In this work, we evaluate our method in askinning context:
how well the segmentation-aware compressed animation
reproduces the original animation when linear blend skinning
is used: A simple assignment method [KMD∗07] is initially
employed to set the skinning weights wi, j ∈ [0,1] which
describe the amount of influence ofj-th segment oni-th
vertex. A fitting process is followed by computing the
matrices Mt

j ∈ R
3×4 that describe the transformation of each

segment j from the rest-posep0 to the subsequent poses
pt ,∀t ∈ [1,k]. The transition of vertexi from the rest-pose
v0

i to a posept is then described bŷvt
i = ∑S

j=1 wi, jM
t
jv

0
i ,

whereS is the total number of segments. The ERMS error
metric proposed by [KSO10] is used to measure the mean
skinning approximation error of the animation sequence.

More specifically, ERMS= 1000‖A−A′‖F
3nk , whereAandA′ are

3k× n matrices that contain the original ({vt
i}) and skinned

approximated ({v̂t
i}) coordinates of each vertex throughout

the animation sequence, respectively.

Rigid Animations. Figure1(e) shows the comparison of our
method in terms of extracting rigid parts when segmenting an
animated hand. Low-resolution global segmentations [SY07]
fail to accurately partition most of the articulations (e.g mid-
dle finger). These segments are captured at higher-detail
representation with the burden of noise cluster creation. From
the ERMS table, we observe that the behavior of our method
starts to change when the number of the final segmentation
resolution is low. This is reasonable since high-resolution
segmentations consist of numerous tiny noisy clusters
generated between consecutive partitionings. Increasing the
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number of per-pose extracted segments will enhance the
skinning approximation.

In Figure11, pose partitionings of 5 and 10 components are
merged to construct multi-resolution segmentations of an ele-
phant gallop animation. First, we observe that the quality of
the former is insufficient due to the low number of segments
per pose. This results in a significant loss of semantic part in-
formation such as the knee of the front-left foot (red-painted).
The segmentation quality is sufficiently improved when more
per-pose clusters are used. The accompanying table illus-
trates the skinning superiority of our method when compared
with several methods on a 18-component segmentation.

Deformable Animations. Figures8 and9 describe objects
that deform under no skeletal influence. Figure8 shows a
segmentation that consists of 23 components from a cloth
simulation. Note that the number of per-pose clusters is
not-constant. Our segmentation preserves better spatial
coherency without creating irregular shapes when compared
to the global segmentation [KSO10] extracted from the
illustrated feature space.

A representative example of combining individual seg-
mentations extracted from tablecloth mesh animations is
shown in Figure9. The segmentation of the first mesh
animation is efficiently transferred to the second one. Mean
rotation angle was used to define the feature space. Note that
the merged segmentation is superior when compared to the
global segmentation [GFW∗06] of the animation created
by blending both animations (e.g the highly-animated
protrusion region was captured by only one segment).

Hybrid Animations . Highly deformable objects can be used
to model clothes in conjunction with skeletal animation. Fig-
ure12 illustrates how our approach produces segmentations
that accurately partition the rigid parts (head, arms and legs of
the dancer) from the highly-deformed surfaces (the dress fol-
lows the motion of the dancer) of a samba dancing animation.
On the other hand, global segmentation [SY07] produces
low-quality partitions. Despite the sufficient rigidity captured
at low-detail, the right leg is wrongly connected to the dress.
Moving to higher resolutions, we observe that rigid compo-
nents (head and legs) are significantly being “pruned” creat-
ing meaningless parts. This leads to a decreasing consistency
of the overall segmentation. Similarly to the hand animation,
we observe that moving from a high-to-low dimension our
method behaves better as compared to the rest methods when
skinning is used to approximate the initial mesh animation.

5.2.1. Discussion

We generally notice that our algorithm produces better
segmentations when focusing on the visual quality of the
segmentations for the mesh animation, whether partitions
it into meaningful volumetric or surface parts. A centric
observation is that it is better to combine multiple parti-
tionings and simplify them, rather than trying to attempt
a global segmentation directly. However, the final output
depends on the quality and the number of the individual
decompositions extracted from each pose. We can explore
a number of directions to improve pose clustering quality
by (a) employing a more sophisticated clustering algorithm,
(b) rectifying the generated boundaries or (c) imposing a

confidence criterion on the initial pose partitionings to retain
only important boundaries. However, this will come with the
burden of additional parameter tuning and extra computation
cost. Note that an efficient low-detail segmentation can only
be computed in case where the individual pose partitionings
exhibit high similarity. Furthermore, our method is suitable
for computing accurate high-resolution segmentations when
the number of per-pose segments is maintained at increased
levels. Conversely, merging partitionings that do not capture
the desired information, would normally lead to poor final
segmentation (e.g. quality of Figure11(d)).

6. Conclusion

We have presented a general approach to efficiently deriving
a multi-resolution segmentation of arbitrary deformations
based on building an over-segmentation which can optionally
be simplified by a robust cleaning reduction process. The
final segmentation can accurately be adjusted when the orig-
inal mesh animation sequence is either modified or updated.
A smooth frame-frame clustering transition is offered by
merging the partitionings between consecutive poses. The
resulting segments are painted on the fly by a novel color
propagation scheme. Finally, we have included extensive
comparative results with respect to performance and quality.

Limitations/Future Work . There is a number of research
directions that could be explored further to improve the lim-
itations of the current work. First, our approach may easily
support time-varying meshes [ACH∗13] by exploiting vertex
mapping techniques to establish pairwise parameterization
between successive frames. Another challenge is to cope
with interactive segmentation on large meshes by taking ad-
vantage of the GPU high-performance parallel architecture.
Further directions may be investigated for tackling the prob-
lem of the increased resolution of over-segmentation. For
example, we may reorganize similar poses into clusters and
pick one of them thereby reducing significantly the number
of the merged partitionings. Except from improving perfor-
mance, this solution will also reduce the additional memory
requirements of storing the individual per-pose partitionings.
Finally, visualization coherency is lost between “far-away”
poses (e.g. observe the different assigned colors at the head
segment at the fifth and seventh pose in Figure12 (a)). This
happens when there is no mapping between clusters of suc-
cessive poses. An interesting alternative strategy could be to
increase the cluster mapping search in a larger time window.
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