
Direct Rendering of Boolean Combinations of Self-Trimmed Surfaces

Jarek Rossignaca,1, Ioannis Fudosb,∗, Andreas Vasilakisb,2

aSchool of Interactive Computing, College of Computing, Georgia Tech, Atlanta, Georgia 30332, USA
bDepartment of Computer Science, University of Ioannina, GR45110 Ioannina, Greece

Abstract

We explore different semantics for the solid defined by a self-crossing surface (immersed sub-manifold). Specifically, we introduce
rules for the interior/exterior classification of the connected components of the complement of a self-crossing surface produced
through a continuous deformation process of an initial embedded manifold. We propose efficient GPU algorithms for rendering
the boundary of the regularized union of the interior components, which is a subset of the initial surface and is called the trimmed
boundary or simply the trim. This classification and rendering process is accomplished in realtime through a rasterization process
without computing any self-intersection curve, and hence is suited to support animations of self-crossing surfaces. The solid
bounded by the trim can be combined with other solids and with half-spaces using Boolean operations and hence may be capped
(trimmed by a half-space) or used as a primitive in direct CSG rendering. Being able to render the trim in realtime makes it possible
to adapt the tessellation of the trim in realtime by using view-dependent levels-of-details or adaptive subdivision.

Keywords: Rendering, CAD, trimming, GPU, capping, clipping, animation, solid modeling, CSG

1. Introduction

Rendering boolean combinations of self-crossing surfaces in
realtime is central to a number of applications such as anima-
tion of deforming objects, preview of CAD operations and col-
lision detection. FFD (free-form boundary deformations) is a
popular paradigm for designing 3D shapes. FFD affords an in-
tuitive direct manipulation and seems most appropriate for edit-
ing medical and artistic models or animations. The designer
may for example use 3D input devices to grab, pull, and twist
the 3D model in natural and predictable ways to create self-
intersecting surfaces [13]. Unfortunately, FFD lacks a useful
semantics of what happens when the designer wishes to cre-
ate a self-intersecting surface model. One may argue that in a
static model, the user could be asked to select which manifold
portions of the surface should be removed by clicking on them.
We offer a semantics that makes this selection process unnec-
essary. More importantly, if we want to apply these topologi-
cal changes to an animated model, we cannot expect the user
to perform these selections at each frame. We need a seman-
tics for performing these selections automatically in a manner
that is coherent over time and that is compliant with the results
that would be obtained through CSG operations. This paper
introduces a framework for treating self-trimmed surfaces as

∗Corresponding author
Email address: fudos@cs.uoi.gr (Ioannis Fudos)

1The material is based on work supported by the National Science Founda-
tion under Grant No 0811485.

2Research of this author has been co-financed by the European Union (Eu-
ropean Social Fund – ESF) and Greek national funds through the Operational
Program ”Education and Lifelong Learning” of the National Strategic Refer-
ence Framework (NSRF) - Research Funding Program: Heracleitus II. Invest-
ing in knowledge society through the European Social Fund.

Figure 1: We show the original manifold boundary S 0 (left), a frame S t pro-
duced by continuously deforming S 0 (we use pink to illustrate the part of the
surface that should be trimmed) (center) and the trimmed result T (S t) (right).

first class citizens, allowing to use them as CSG primitives or
to show their cross-sections (intersections with a plane) using
capping. In this work, we formally define the problem, explore
rules that capture application semantics and provide efficient
GPU-rendering algorithms.

Formally, a surface S is manifold when it is a compact and
orientable two-manifold without boundary. We say that S is
self-crossing when its immersion contains non-manifold self-
intersection edges where S “passes through itself”, as shown in
Figure 1. Hence, two or more different points of S coincide at
each point of a self-crossing curve of the immersion. We say
that S is a boundary when S is the boundary of some solid
(closed-regularized point set) that we denote I(S) and call the
interior solid of S.

Consider an initial manifold boundary S 0 that is not self-
crossing and a continuous process Dt that deforms this sur-
face while keeping it an immersed sub-manifold. Let S t denote
the instance Dt(S 0) of the deformed surface at time t. Assume
that S t is self-crossing, then we say that S t is a Self-Crossing
Surface, abbreviated SCS, i.e., a compact, immersed, and ori-

Preprint submitted to Elsevier August 12, 2012

Andreas
Sticky Note
This is the author's version of an article that has been published in CAD journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://www.sciencedirect.com/science/article/pii/S0010448512002175

Andreas
Sticky Note
Marked set by Andreas

entable surface with transverse self-intersections. An example
of the above setting is illustrated in Figure 1.

We explore here different semantics for defining the solid that
it represents, which we call its interior I(S t), and hence also its
trim, T (S t), which is the subset of S t that is the boundary of
I(S t). We say that T (S t) is a Self-Trimmed Surface, abbrevi-
ated STS. The interior along with the STS define a manifold or
a non-manifold object.

In this context we identify two generic problems and devise
rules to capture them:
Problem I: Given an SCS (Figure 1(b)) determine the trim (Fig-
ure 1(c)).
Problem II: Given an initial manifold boundary S 0 (Fig. 1(a))
and a continuous process Dt that deforms this surface to an SCS
S t (Figure 1(b) determine the trim T (S t) (Fig. 1(c)).

To address the first problem, we explore static rules that de-
pend only on the SCS and evaluate at least in simple cases
how well the results they produce match what we consider to
be plausible intentions of the designer.

The second problem corresponds to dynamic rules that de-
pend on the deformation history and the SCS. We are partic-
ularly interested in formulations of T (S t) that correspond to a
designer’s intuitive expectation of the sequence of results that
should be produced by a reasonable deformation Dt that cre-
ates several self-crossings. In particular, we propose semantics
that mimic locally the natural behavior of incremental Boolean
operations, where self-crossings are created in S t one at a time
and each performs a local union or intersection of shapes de-
fined partially by two portions of the previous frame S t−1.

We also introduce practical and efficient GPU-based trim-
ming algorithms that render T (S t) directly by scan-converting
S t and S t−1 (where t is the frame number) without the need
for computing self-intersection curves. We do this by testing
surfels, to establish whether they lie on the boundary of I(S t).
Surfels are represented by fragments of the surface that arise
from the intersection of the surface with a ray originated at the
center of the corresponding pixel of the viewing plane.

We claim three advantages of such a direct trimming and ren-
dering approach. The first advantage is the elimination of the
cost of computing self-intersection curves and of identifying the
faces (connected components that are cut out by these curves).
Such a cost would otherwise make it impossible to render the
trim during deformation animations or perform interactive edit-
ing. The second advantage is the flexibility of being able to
define S t as the result of a (possibly adaptive) subdivision pro-
cess to be carried out on the GPU. Finally, we can render on
the GPU the result of combining the interiors of two or more
self-crossing surfaces through CSG operations.

2. Background and Problem Definition

An CS S partitions the 3D space W into open full dimensional
components Ci (i.e., the maximally connected components of
W − S), one of which is infinite (denoted here by C0). Each
component is classified as either interior (also denoted as in),
i.e., part of the interior of the solid, or exterior (also denoted

as out). The solid I(S) represented by S is the closure of the
union of all interior components. Our objective is to define a
rule that selects the components of I(S). To obtain a bounded
solid, C0 should not be included, and hence is classified as out.
Other components may be classified as in or out, depending on
the chosen rule.

The trim, T (S), is the boundary of I(S). Hence, trimming
amounts to discarding portions of S that separate either two in-
terior or two exterior components.

Various rules (semantics) may be used to associate a solid
I(S) with an SCS S. One may conceive interesting rules that
compute new bounding surfaces for solid I(S) (by for instance
using the convex hull of S or a visibility graph). Here, we focus
on rules that have the boundary diminishing property, which
states that the boundary T (S) of I(S) must be a subset of S.
Note that this property is satisfied by Boolean and regularized
Boolean operations [26, 20].

In 2D, the index (also called winding number) w(p,C) of
an oriented, closed-loop, self-crossing curve C around a given
point p that is not on C is an integer representing the total
number of times the curve travels counter-clockwise around the
point. The winding number depends on the orientation of the
curve, and is by convention negative if the curve travels around
the point clockwise. All points in a given component (maxi-
mally connected component of the complement of C) have the
same winding number. The infinite component has winding
number 0. One may easily keep track of the winding num-
ber by propagating it from one component to an adjacent one.
Crossing the curve once increments or decrements the winding
number, depending on the orientation of the curve relative to
the direction of the crossing.

In three dimensions, the index w(p, S) of a point p with re-
spect to an SCS S may be defined as follows. We assume that
p is not on S. Consider any path P from infinity to p. Let ki

be the number of times that P enters S (i.e., crosses the bound-
ary in a direction opposite to the outward normal) and ko be the
number of times that P exits S (i.e., crosses the boundary in a
direction confluent to the normal). Then, w(p, S) = ki−ko. Fig-
ure 2 shows an SCS cross section (green self-crossing polyline)
with the triplet (ki, ko,w(p, S)) indicated for each area, where
ki and ko were computed from the left. Note that points of
the same component may have different ki and ko (for example
when counting from the bottom) but they have the same index.

For conciseness, we denote w(p, S) by w(p) or by simply w.
Heisserman [8] provides an equivalent definition of the index
(winding number) as the number of times the surface encloses
a point.

Note that in situations where P simultaneously crosses sev-
eral neighborhoods of S , the crossing of each neighborhood
must be accounted for separately.

The index is the signed generalization of the overlap count
which is defined as the unsigned count of the number of surfels
that correspond to a pixel and is used in rendering to determine
the transparency effect. Note that the index is in general not
equal to the overlap count, which is defined at a point p as the
number of times a specific ray from p to infinity hits the surface.
When the ray is aimed at the viewpoint, the overlap count may

2

(a) (b)

(a) (b)

(c)

(3,2,1)

(1,0,1) (2,0,2) (2,1,1)

(1,2,-1)
(2,-2,0)

(1,1,0)

(0,1,-1)

(1,1,0)

(3,3,0)

(1,0,1)

(1,1,0)

(2,1,1)

(2,1,1) (2,2,0)

(2,1,1)

(1,1,0)

(2,2,0)

(2,2,0)

points at infinity (-oo, y, zc)
for determining (ki, ko, w)

z

x

y

(a) An SCS S

(b) A cross section of S on plane z=zc

(1,0,1)

(1,0,1)

(1,0,1)

(1,0,1)
(0,0,0) (2,2,0)

(1,1,0)(0,0,0)

Figure 2: (a) An SCS S . (b) A cross section of S on plane z = zc illustrated
with thick green transparent line with normal vector orientation marked. We in-
dicate the values of the triplets (ki, ko,w) using (−∞, y, zc) as point at infinity for
determining the characterization for a point p(x, y, zc). The horizontal dashed
red rays originating from the points at infinity along with the green polyline
partition the plane into areas with the same triplet value. Note that ki, ko de-
pend on the selection of the point at infinity, whereas the winding number is
independent of this choice.

be computed on the GPU for each pixel and used to control
transparency effects. Note that the parity of the overlap count is
independent of the direction of the ray, identical to the parity of
the index, and constant throughout a component.

We want to use the fragments (depth, color, and normal val-
ues of S associated with points of T that project on a pixel
center) that are generated by this rasterization to render scenes
where I(S) is capped [14, 23] and combined with other shapes
through CSG operations [6, 7]. Capping returns the intersec-
tion of I(S) with a 3D region R that is the intersection or the
union of (usually) linear half-spaces and displays the caps, i.e.,
the portions of the boundary of R in I(S).

3. Prior Art

Interior Visualization. Different techniques have been pro-
posed for visualizing the interior and hidden portions of solids
or assemblies. Hidden edges and silhouettes may be overlaid

with a shaded rendering of the visible surfaces [24]. Surface
transparency and depth ordering [1] may be used to modulate
the color based on the translucent surfaces seen through a pixel.
Volume rendering may be used to modulate color based on the
thickness of solid layers traversed by a ray from the viewpoint
(see e.g. [29]). A portion of the boundary may be removed
using clipping planes or solids, exposing hidden surfaces and
potentially back-facing portions of the boundary. Because such
images may appear confusing to the casual viewer, capping [23]
is used to render the intersection of the boundary of the clipping
region with the interior of the solid. Capping uses the parity of
overlap count (or equivalently of the index) to decide whether
a candidate point on the boundary of the clipping region lies
inside the solid to be capped. This parity may be computed
efficiently at each pixel using a stencil bit. The self-trimming
solution proposed here builds upon the capping approach, but
differs from it in two important ways: (i) candidate points are
generated on the SCS itself (not on the boundary of a trimming
region) and (ii) a different test is used to classify candidate sur-
fels.
Direct CSG Rendering. A complex solid may often be de-
signed as a Boolean combination of other solids. The design
sequence may be captured as a Constructive Solid Geome-
try (CSG) representation [20] that defines a Boolean expres-
sion with union, intersection, and difference operators and with
primitive solids as operands. In early solid modeling systems
[28] the primitives were restricted to simple quadrics (block,
sphere, cone, cylinder and torus). Computing the boundary of
solids defined in CSG with more general primitives (triangle
meshes, NURBS, subdivision surfaces) is computationally ex-
pensive and numerically delicate. To address this problem, sev-
eral screen-based techniques have been proposed for rendering
CSG models directly on the GPU by classifying surfels against
each primitive. Some approaches [3, 5, 9] use a disjunctive
form (union of intersections) formulation of the Boolean ex-
pression to simplify the trimming. Unfortunately, the number
of intersections (products of a disjunctive form) may grow ex-
ponentially with the number of primitives. To avoid this com-
plexity exposure, the Constructive Solid Trimming (CST) [7]
trims the boundary of each primitive against the Blist [6] of its
active zone [25], which defines the solid where the boundary
of the primitive contributes to the boundary of the solid. Re-
cently, Rossignac has shown that 6 stencil bits per pixel suffice
for rendering arbitrarily complex CSG models, by providing a
linear cost algorithm that swaps left and right operands of the
Boolean expression of n literals so that it may be evaluated us-
ing O(loglogn) space [21]. Recently, Zhao et al. [31] have
introduced a fast hardware assisted method for approximately
reconstructing CSG results using rasterized views. These meth-
ods are not capable of handling self-trimmed surfaces.

The self-trimming approach proposed here fits well with
these direct CSG rendering approaches and permits the use of
CSG primitives defined by self-trimmed surfaces. Because the
trim can be evaluated at each pixel directly from the represen-
tation of the SCS, the SCS may evolve from one frame to the
next, as the result of a change in the subdivision depth (dynamic
level-of-detail) or as the result of a free-form deformation or

3

skeletal bending during an animation.
Self-trimming. Static interior classification of self intersect-
ing curves has been studied extensively in 2D (see for example
[8]). When the bounding loops of several connected regions
of the plane evolve over time and self-overlap, one may wish
to decide automatically which region should be visible at each
pixel. The union of the boundaries of these regions decomposes
the union of the regions into cells. A valid association of each
cell with a unique region must satisfy constraints that ensure
that the arrangements can be realized by placing and interleav-
ing physical cut-out regions on a plane [16].

The problem becomes more complex when these regions are
connected, and hence can no longer be differentiated. In par-
ticular, several authors have addressed the problem of defining
the interior of self-crossing curves of a particular class, which
may be characterized by stating that the curve is the boundary
of a topological disk that does not contain any fold-over (i.e.
each portion of that disk is front facing). The issue of deciding
whether a self-crossing curve is in this class and whether it is
the projection of the boundary of a front-facing disk in 3D has
been discussed by [2]. A simple approach that works well in
practice has also been proposed by [18].
Efficient Multi-fragment Rendering. Correct rendering and
trimming of self-crossing manifolds requires per-fragment sort-
ing operations, which can be more expensive than sorting ob-
ject (or geometry) primitives, but can correctly handle inter-
secting or overlapping geometry. Maule et al. [15] classify
the fragment-sorting methods into two categories, buffer-based
methods which first store and then sort the fragments and depth
peeling methods that extract depth order implicitly through
multi-pass rendering.

Liu et al. [12] introduced CUDA implementations for dy-
namically and efficiently building a fixed data structure, called
FreePipe, maintaining many fragments per pixel in real-time.
The major limitations of FreePipe is the potentially large mem-
ory requirement depending on the screen resolution and depth
complexity of the scene. Furthermore, such techniques usu-
ally require to switch from the traditional graphics pipeline to a
CUDA rasterizer scheme.

To alleviate high space cost, Yang et al. [30] propose a dy-
namic construction of a per-pixel Linked-List structure aiming
at avoiding unnecessary memory pre-allocation. However, it is
slower than previous methods due to the excessive access of the
shared memory. This technique requires the most recent APIs
(OpenGL 4.2 or DirectX 11) supported only on recent graphics
processors.

Multi-pass rendering has been used to carry out many effects,
often substantially limiting performance. Probably the most
well-known multi-pass technique is front to back peeling [4]
which works by rendering the geometry multiple times, peeling
off a single fragment per pass. Dual depth peeling [1] reduces
the number of geometry passes by capturing both the closest
and farthest fragments in each pass. For a comprehensive sur-
vey on the complete raster-based fragment-sorting techniques
readers may refer to [15].

In this work, we have adapted several state of the art multi
fragment techniques to achieve efficient rendering of self-

trimmed surfaces (Front to back, Dual depth peeling, FreePipe,
LinkedLists) and we have provided comparative results in terms
of time and space requirements.

4. Revisiting Interior Exterior Classification Rules

Previously proposed rules for interior classification are static
and sometimes depend on the topology of the self-intersecting
surface (for example index based classification). Such rules do
not capture the process of dynamically extending interior or ex-
terior parts in a consistent and intuitive manner (Problem II) but
may yield useful classifications for determining the interior of
an SCS of unknown origin (Problem I).

4.1. Static Rules
Static rules are usually based on the point index with respect to
the current SCS for classifying points as interior or exterior.
We wish for the classification rules to be intrinsic, i.e., indepen-
dent of the choice of coordinate system. In some applications, it
is useful to support rules based on global topological or integral
properties (such as the genus or volume of a component or its
surface area) [19]. We will discuss possible extensions of our
work to support such global rules, but this section is primarily
focused on local rules. A rule is local if the classification is
based on the intersections of S with a given ray that does not
intersect any curve derived by a self-crossing. In this section,
we consider only static rules that are based on the index w of
the component that we wish to classify.

The popular parity (also called alternating interior) rule
classifies a component as interior when the index of its points is
odd. This corresponds to switching the interior status each time
one traverses S. Note that the result is not altered by a global
change of the orientation of S. Hence, we say that the parity
rule is orientation invariant. Unfortunately, the parity rule
will only trim (remove from S) some of the two-dimensional
self-overlapping portions of S. Thus, if S is self-crossing, but
does not have self-overlaps, then T (S) = S . Although this is a
useful rule, it does not allow the designer/user to easily modify
the genus of the interior closure of a manifold boundary S by
warping S so that it crosses itself. When S overlaps itself (along
a full-dimensional portion instead of cleanly self-crossing), the
parity of the number of portions that overlap at a point p of S
defines whether p is in T(S).

Unfortunately, the alternating interior rule is rarely an accept-
able option since

1. Usually it does not trim the surface at all, hence it yields
solids with S = T (S) (except in self overlapping parts).

2. It produces non-manifolds solids where each self crossing
edge is a non-manifold edge.

Both facts are illustrated in 2D in Figure 7(b). The red blurred
lines indicate the trim (i.e. the STS which is the surface after
trimming). In the simple case of Figure 9((left) all three man-
ifold subparts are considered inside with the parity rule, even
the clearly negative volume in the middle. Finally, they are
connected through shared curves resulting in a non-manifold
object.

4

Figure 3: An example where the positive index rule works.

w=1 w=1 w=1

w= -1 w= -1 w= -1

w=0 w=0

w=0 w=0

w= -1 w= -1

w
=
1

w
=
1

Figure 4: The green self-crossing loop (left) defines two regions, one of which
has negative index and is discarded. Then we grow the other region (which is
the interior defined by the self-crossing loop) by extruding a portion of its left
border so that it overlaps the discarded region. We expect the space conquered
by this extrusion be part of the new interior (center). The red line indicates the
trim T (S) (the boundary of the interior). Note that using the positive index rule
(right) does not produce the expected result.

Heisserman [8] has proposed the positive index rule (1-
st unary intersection) that classifies as in the components for
which w is positive (the closure of the set of points with winding
number greater or equal to 1). Of course, w is normally 1 in-
side S and 0 outside when S is free from self-intersections. This
rule is not orientation invariant. This semantics is appropriate
for applications that involve growing an initial set through off-
setting [22], sweeps and Minkowski sums [10]. For example,
Figure 3 shows a green loop with interior G, a red loop with
interior R, and a self crossing blue loop defining an interior B,
which is the Minkowski average G⊕R

2 [10], where the interior is
defined as the set of points with strictly positive winding num-
ber.

Defining the interior by w ≥ 1 works well for cases such as
the ones shown in Figures 7(a) and 8 but does not yield intuitive
results for the case of Figure 4. Also it may improperly classify
a region, such as component e in Figure 9. Finally, to derive
the complement of the solid under the positive index rule, we
should both change the orientation of the surface and adjust the
index by adding a surrounding box (i.e. assign index −w + 1).

Here we propose the alternating border rule where a point
p is in if and only if

⌈
w(p,S)

2

⌉
%2 = 1. In simple configurations,

it is equivalent to the positive index rule as shown in Figure 8.
It has however two interesting and intuitive properties.

When the surface is free from self-overlaps, but crosses itself,
then the classification of S, as being part of the trim T of I(S)
or not, alternates at each crossing edge. This is illustrated in 2D
in Figure 5, which shows that this simple rule makes it easy to
design and represent faces that are simply connected by using
a single loop. In other words, the union of the self-crossing
curves decomposes S into faces. This is substantiated by the
following Theorem.

Theorem 1. Adjacent faces (those incident upon the same self-
crossing edge) have opposite classification with respect to the

Figure 5: An example of creating a genus-1 object by deforming a single loop.

trim T (alternating border).

Proof. Consider a surface part s crossing a surface part s′ and
let fi(s) and fi+1(s) be the two adjacent faces. We shall prove
that fi(s) is part of the trim if and only if fi+1(s) is not part of the
trim (see Figure 6). For the purposes of the proof we will use
an equivalent definition of the alternating border rule: a point
p is in if and only if w(p)%4 is 1 or 2. Equivalently, p is in if
and only if there is an integer λ such that either w(p) = 4λ + 1
or w(p) = 4λ + 2. Clearly, p is out if and only if there is an
integer λ such that w(p) = 4λ or w(p) = 4λ + 3. Assume
fi(s) is part of the trim, then the adjacent components Ui(s)
and Di(s) will have classification in/out or out/in respectively.
Since the components are adjacent to the face their index num-
bers will differ by one. Let Ui+1(s) and Di+1(s) be the adjacent
components to face fi+1(s). Without loss of generality assume
w(Dk(s)) = w(Uk(s)) + 1 for k ∈ {i, i + 1}. Then for every case
of Ui(s)/Di(s) being in/out or out/in Ui+1(s)/Di+1(s) have clas-
sification out/out or in/in (see Figure 6). Therefore, fi+1(s) is
not part of the trim. Vice versa, suppose fi(s) is not part of the
trim. Likewise, it follows (see Figure 6) that fi+1(S) is part of
the trim.

adjacent component

classification for face

fi(s). Components

Ui(s) / Di(s)

index numbers

w(Ui(s)) / w(Di(s))

w(Ui(s))+1=w(Di(s))

Index numbers

w(Ui+1(s)) / w(Di+1(s))

case w increases by 1 or

case w decreases by 1

after crossing s’

adjacent component

classification for face

fi+1(s) (after crossing

s’). Components

Ui+1(s) / Di+1(s)

in/in / or in/out or out/in

out/out 4 - / or

4(- -

out/in or in/out

out/in / or 4 - in/in or out/out

in/out 4 / 4 out/out or in/in

s’
 s

Di(s)

Ui(s)

Ui+1(s)

Di+1(s)

fi+1(s)

fi(s)

Figure 6: Establishing that under the alternating border rule, for adjacent faces
it holds that exactly one of them will be part of the trim. A face is part of the trim
if the two adjacent components have different interior/exterior characterization
(in/out or out/in).

Furthermore, the alternating border rule does not generate

5

non-manifold edges unless the surface crosses itself multiple
times along the same intersection curve.

Lemma 1. The alternating border rule does not produce non-
manifold solids with simple self-crossings (see Figure 7(c))

Proof. Consider 4 portions of the surface incident upon any
segment of a self-crossing intersection curve C. Two of these
are trimmed away, because our rule toggles trimmed/retained
classification when crossing C. Hence, the segment has two in-
cident portions and is thus manifold.

Finally, the alternating border rule has two more practical
characteristics:

1. We may obtain the complement of a solid, simply by
adding two bounding boxes with the same surface orienta-
tion (index becomes w − 2 or w + 2). This follows directly
from the equivalent definition of the alternating border rule
in the proof of Theorem 1.

2. If we reverse the surface orientation we obtain the comple-
ment of the trim. This follows immediately from Theorem
1.

(a) (b) (c)

Figure 7: Interior classification using (a) the positive index rule, (b) the alter-
nating interior rule and (c) the alternating border rule.

d

c

a

b

Figure 8: An example where the positive index number rule derives intuitive
interior/exterior classification: (a) top tip wagging (b) bottom tip extending (c)
dent creation (d) bump creation.

4.2. Dynamic Rules

Figure 9 illustrates the limitations of static rules with respect
to Problem II. We use a deformation of an initial self-crossing
curve shown on the left that extends the bottom tip upwards.
The intuitively correct result is shown in the right. However,
both the positive index rule and the alternating boundary rule
would classify area e as exterior since its index is 0.

���� ������

����

���� ������

����

�

�����

�� ����������

����

���� ��������������

����������������������

�

�����

Figure 9: A deformation example where static rules fail to derive intuitive
interior/exterior classification. The initial self-crossing curve (left) is modified
(right) by extending the tip of the bottom part upwards. This change creates
a region e where w = 0 and which is hence excluded by the static rules. Yet,
intuitively, it should be part of the interior, since it corresponds to Boolean
union of the initial interior with the extruded region.

To address this problem, we propose more complex rules,
which at each stage, compare the previous and current indices
of each region. More formally, we define a characterization of
the components C

′

i at some stage of the deformation process
based on the current index of the component, and the classifica-
tion of the component and the index with respect to the surface
S at the previous stage of the deformation.

Formally, components C
′

i are formed by a deformed surface
S
′

that is derived by performing k disjoint concurrent defor-
mations on S, such that S

′
= f (S) = f (s1)∪ f (s2)∪ . . .∪ f (sk),

where {s1, s2, . . . , sk} is a partition of S and for all surfaces in
{ f (si) : f (si) , si} it holds that they do not cross, self-cross,
overlap or self overlap. This restriction ensures that a boundary
surface may cross a point only once during each set of concur-
rent deformations. The k concurrent disjoint deformations may
be applied in a number of steps called frames. Determining the
interior/exterior is based on the classification and point index
obtained for the reference surface S and the new point index
with respect to the current surface S

′
.

4.2.1. Properties Characterizing the Behavior of Dynamic
Rules

We will determine whether the following properties hold for
post-deformation interior/exterior classification semantics:
Extension-normal confluence property. When deforming a
surface by displacing it locally in the direction of the outward
pointing normal, the points crossed either become interior or
are not affected.

When we deform the surface in the opposite drection oppo-
site to the normal the points crossed either become exterior or
are not affected. Points whose index increases are candidates
to become interior points and points whose index decreases are
candidates to become exterior points. Points whose index does
not change preserve the status that they had before the defor-
mation.
Complement symmetry property. If we apply the same de-
formations on the complement we obtain the complement of the
result.
Component homogeneity property. Each component con-
tains only interior or only exterior points. This is a very im-
portant property since otherwise the border of the interior parts
may not be a subset of the deformed initial surface. This is

6

equivalent to the aforementioned boundary diminishing prop-
erty.

The following rules are based on the point index variation
and the interior/exterior classification of the reference surface
S. We denote the previous and the current index at a point p by
w(p, S) and w(p, S

′
), where S and S

′
denote the surface before

and after the deformation, and the previous and the current in-
terior/exterior classification by i(p, S) and i(p, S

′
) respectively.

Let i(p, S) be the classification of point p with respect to sur-
face S. Then, i(p, S) is 1 when p is in, 0 when p is out, and
undefined when p is on T (S).
For the initial classification of the SCS surface S 0 prior to any
deformation, we use the alternating border rule. However, an-
other scheme, such as the positive index rule, could be used if
desired.

4.2.2. Constructive Rule
Here we define the constructive rule that emulates CSG behav-
ior among the original solid and the newly created volumes due
to deformation.

According to CSG we employ additive (union), subtractive
(difference) and intersection deformation semantics for inte-
rior/exterior classification. After each step of concurrent de-
formations, we determine the interior/exterior classification of
a point p with respect to the deformed surface S

′
by performing

a union, subtraction or intersection between the original solid S
and the newly created volumes. A point belongs to the newly
created volume if and only if its index has been modified, i.e.
(w(p, S)! = w(p, S

′
))

i(p, S
′
) = i(p, S) op (w(p, S)! = w(p, S

′
))

where op depends on the type of deformation. For additive
deformation AopB corresponds to logical OR (A∨B), for inter-
section deformation it corresponds to logical AND (A∧B) and
finally the subtractive operation AopB is realized as A ∧ ¬B

Additive deformation corresponds to adding a part to the in-
terior (set union), subtractive deformation corresponds to sub-
tracting a part from the interior (set difference). These seman-
tics yield results that are symmetric to the complement if we
replace each additive with a subtractive deformation and vice
versa.
We observe that although this rule captures design intent and
has a constructive nature, it does not preserve component ho-
mogeneity. Thus, in some cases this rule may yield highly non
intuitive results for users not familiar with the CSG process.
For such users, results where the trim is not part of the ini-
tial surface S (see Figure 10) may look ill-defined. To address
this problem, we use the confluent deformation rule (see Figure
10(f)).

4.2.3. Confluent Deformation Rule
After each step of concurrent deformations, the interior exterior
classification is determined by the following formula:

i(p, S
′
) =

 i(p, S), w(p, S) = w(p, S
′
)⌈

w(p,S
′
)−w(p,S)
2

⌉
%2, otherwise

Figure 10: Illustrates how the constructive and the confluent deformation rules
work. Interior parts are shown as shaded regions. The SCS is depicted by the
green polyline. Red blurred lines indicate the trim (i.e the border of the new
solid). Dashed red lines indicate parts of the trim that are not part of the SCS.
(a) The original object and boundary, (b) after applying a set of 3 concurrent
disjoint deformations f on surface parts s0,1, s0,2 and s0,3 on (a) with subtractive
semantics (constructive rule), (c) after applying a set of one deformation g of
s1,1 on (b) with additive semantics (constructive rule), (d) after applying f on
(a) with additive semantics (constructive rule), (e) after applying g on (d) with
subtractive semantics (constructive rule), and (f) after applying f on (a) and
then g using the confluent deformation rule. In cases (a)-(e) the boundary of
the shaded regions (trim) is not always a subset of the SCS.

which turns out to be equivalent to:

i(p, S
′
) =


i(p, S), w(p, S) = w(p, S

′
)

0, w(p, S) > w(p, S
′
)

1, w(p, S) < w(p, S
′
)

Note that, given that if w(p, S
′
) has changed then it differs from

w(p, S) only by one. Thus, i(p, S
′
) is 1 if and only if the point

index is increased (extending the interior) and 0 if and only if
the point index is decreased (extending the exterior). Figure
10(f) illustrates the result of applying two sets of concurrent
disjoint transformations on the object of Figure 10(a).

4.2.4. Homogeneous Confluent Deformation Rule
The confluent deformation rule can be extended so as to enforce
component homogeneity by imposing the following restriction:

A part sout of surface S that is not part of the border B cannot
be deformed towards the normal if sout is between two exte-
rior components. Likewise a part sin of a surface S that is not
part of border B cannot be deformed in a direction opposite to
its normal if sin is between two interior components. This re-
striction improves the confluent deformation rule semantics by
enforcing component homogeneity.

To enforce the deformation restriction we need to detect
trimmed off parts of the surface, i.e. parts that do not belong to
the border and the interior/exterior classification of the adjacent

7

components. To simplify user interaction we suggest to prohibit
deformations of the surface parts that have been trimmed off.

Table 1 provides a comparative overview of the inte-
rior/exterior classification rules presented in this section based
on their principle, the efficiency of their implementation, their
properties and their intuitiveness with respect to graphics and
CAD designers. Graphics designers expect continuity during
deformation sequences and consistency as far as viewing from
outside is concerned. On the other hand, CAD designers ex-
pect robustness, manifold objects and are better acquainted with
solid modeling operations.

Implementing these rules efficiently in hardware is far from
trivial. We need to detect fragments that belong to the trim of
the surface based on the current index, the reference frame in-
dex and the interior/exterior classification. In all cases we shall
maintain in the current scene the fragments of the reference
frame as well. By doing so, we can build efficient algorithms
for realizing the confluent deformation rules with or without
component homogeneity (see Section 5).

Table 1: Comparative overview of the properties and characteristics of static
and dynamic rules

Rule based on

intutiveness

for CAD

designers

intutiveness

for graphics

designers

Properties
Implementation

efficiency

component

homogeneity

extension-

normal

confluence

complement

symmetry

Static rules
index low low NA NA

very efficient

two pass

Constructive

index change and

previous classification
high low - -

efficient

multipass or

freepipe

Confluent

deformation

index change and

previous classification
moderate moderate -

efficient

multipass or

freepipe

Homogeneous

confluent

deformation

index change, previous

classification
moderate high

efficient

multipass or

freepipe

5. The Rendering Algorithm

In this section we present rendering algorithms for self-crossing
manifolds and in particular we explain how to compute effi-
ciently the point index, and how to perform efficiently trim-
ming, clipping, capping and CSG operations. We discuss how
the static and the dynamic rules are realized in this context. For
computing and rendering the trim, we have employed multi-
pass (sort-independent) and buffer-based peeling techniques.
The basic process underneath all these techniques is the same:
process all fragments per pixel (in addition to reference frame
information for the dynamic rules) to determine the index and
the interior/exterior classification. Section 6 presents results
using all these alternatives.

5.1. Rendering using Static Rules
For the purposes of performance analysis, we consider that

rendering based on static rules involves two processes:

1. compute the point index of a point p that lies at depth Dp

on a ray starting from the corresponding pixel. For static
rules, this information is sufficient for directly computing
the interior/exterior classification.

2. find the first fragment after the clipping depth that lies be-
tween two areas with different interior/exterior classifica-
tion. This step corresponds to trimming, i.e. rendering
only the trim.

We have realized this on the GPU using several algorithms. Be-
low we describe these implementation options, their details and
their advantages and restrictions.
Point Index and Interior/Exterior Classification. One may use
front to back depth peeling - F2B [4] for peeling all front-
facing and back-facing intersections of the ray with the SCS
(see Figure 11).

To improve the efficiency of the F2B peeling, we may use
dual depth peeling [1], an extension of depth peeling based
on a min-max depth buffer which peels two layers at a time.
Instead of depth peeling one layer per pass, we apply the dual
depth peeling method for peeling a pair of a front facing and a
back facing fragment in one geometry pass.

Clipping or capping plane
pixels

ray

F F

F

B

IN

IN

OUT

(OUT)

normal vector

C0

C2C1

C3

Figure 11: A self intersecting orientable surface that partitions space in four
components: C0 is the outside component, components C2 and C3 are interior
and C1 is exterior according to the alternating border rule. The boundary sur-
faces of C2 and C1 are shown with green and yellow respectively, whereas the
remaining boundary (part of the boundary of C3) is illustrated in cyan. The
green part of the boundary should be trimmed off according to the alternating
border rule.

Inspired by sort-independent methods [17, 1] for approximat-
ing efficiently transparency rendering effects, we introduce a
technique that determines the classification in two passes. The
main advantage of this technique is that it does not require sort-
ing of the individual fragment layers of the model. At the first
pass, we compute the point index by turning off the hardware
depth test and initializing the point index indexP to zero (in this
algorithm there is no need for lock flags). Then, for each layer
whose depth is less than Dp, we set its index count to 1 or −1
depending on whether it is front or back facing, respectively.
Using the atomic ADD blending operation, we accumulate the
final point index result. Then, by using a full screen pass we
compute the interior/exterior classification applying the static
rule on the point index. A second geometry pass is needed to
retrieve the next layer after the target depth Dp. Overall, the
two pass technique works in two steps:

8

1. IndexClassificationStatic - (Algorithm 1)
2. ClosestRender - (Algorithm 2)

Algorithm 1 IndexClassificationStatic()
/* compute point index using ADD blending on indexP */

1: indexP← 0
2: for each fragment f : depth(f) ≤ Dp do
3: indexP← (f is front facing) ? 1 : −1
4: end for
/* classify the point as interior or exterior by applying the static rule
on the point index */

1: charP← static rule(indexP)

Algorithm 2 ClosestRender()
/* find the closest fragment after the Dp using Z-Test */

1: for each fragment f do
2: if depth(f) ≤ Dp then
3: discard(f)
4: else
5: color ← color(f)
6: end if
7: end for

The same principle can be implemented by buffer-based
peeling using the FreePipe [11] or Linked-Lists [30] technique
by processing all stored fragments with depth(f) ≤ Dp and
adjusting accordingly the signed sum of front and back facing
fragments. This is accomplished by performing a depth based
presorting of all fragments per pixel. In the case of FreePipe
where we have a preallocated space with all fragment infor-
mation per pixel, the sorting step can be carried out by further
exploiting parallelization among the pixels.

All techniques are free from any read-modify-write (RMW)
hazards. The F2B and dual depth peeling methods do not suffer
from the z-fighting effect for fragments that have different nor-
mal direction (i.e. one front facing and one back facing frag-
ment with the same depth). However, the algorithm does suffer
from z-fighting fragments with the same normal direction (i.e.
two front facing fragments or two back facing fragments may
cause miscalculation of the point indices). The Two-pass, the
FreePipe and the Linked-Lists techniques do not suffer from
any type of z-fighting.
Clipping and Trimming with Static Rules. For rendering the
clipped STS, we process fragments after the clipping plane un-
til we find a fragment that has alternating interior exterior char-
acterization on its two adjacent sides (interior/exterior or exte-
rior/interior). This is the fragment that we shall render. To de-
termine the classification of the point index of the correspond-
ing point of the clipping plane C, we use Algorithm 1 with re-
spect to the depth of C (i.e. Dp = depth(C)).

5.2. Rendering using Dynamic Rules

The point index computation is the same as in the case of static
rules. The interior classification for a certain point is a slightly

more complicated process. The trimming process for dynamic
rules is considerably more complex and is outlined below.
Interior/Exterior Classification. In clipping with dynamic rules,
we need to pass over to the next animation frame the charac-
terization (interior/exterior) and the index of the corresponding
clipping plane point. For this reason, we use one more texture
with the index of the previous frame and the interior/exterior
characterization. In fact, we may use the index and the inte-
rior exterior characterization of the point of the clipping plane
that corresponds to any of the previous frames of the current
sequence of disjoint deformations. For efficiency, we use the
first frame of each such sequence (also called the reference
frame. The corresponding texture information (index and in-
terior/exterior classification) will be used in all frames of the
current disjoint deformation sequence. The correctness of this
process is due to the fact that during each sequence of disjoint
transformations the index of each point may be altered only
once. For this process, we use a variation of the static meth-
ods. The details are shown in Algorithm 3.
Clipping and Trimming with Dynamic Rules. For rendering the
STS with dynamic rules, we need to have available all previous
interior/exterior characterizations and index information from
the reference frame. To do this, we need all interior/exterior in-
formation, the location of all fragments (i.e. the corresponding
depths), and information to compute the corresponding indices.
It is prohibitive to maintain all this information per pixel and
pass it over from one shader to the next. A test implementa-
tion demonstrated that this is feasible using all available texture
memory for 128 layers of fragments but this would also speed
down considerably the rendering algorithm and would require
powerful state of the art graphics hardware.

We present an algorithm that maintains the geometry infor-
mation of the reference frame and uses coding for distinguish-
ing whether a fragment has been derived from a primitive of:
(i) the reference frame, (ii) the current frame or (iii) both (has
not been deformed).
This information is compiled through the geometry shaders us-
ing the value of the frameClass parameter to store the frame
classification of the primitive. This is then conveyed to the
corresponding fragments. If f rameClass = 0 then this frag-
ment has originated from a primitive that is part of the reference
frame only. If f rameClass = 1 then the fragment has orig-
inated from a primitive that is part of the current frame only.
Finally, f rameClass = 2 means that the fragment has origi-
nated from a primitive that exists in both the current and the
reference frames.

Thus, for each pixel we have available all fragment infor-
mation from the current frame and the reference frame includ-
ing depth information. We can also compute the corresponding
indices for each such fragment of the current or the reference
frame. In addition to this information we need a bit vector that
will store the in/out information per pixel that corresponds to
the characterization of the partitioning of space by the corre-
sponding fragments. This needs to be computed only once for
each reference frame. The size used to store this information
sets a bound for the number of layers that we can peel. If we
use a 4 × 32 bit vector we can account for 128 fragment layers

9

per frame, a trade off that is quit reasonable even for commodity
graphics hardware.

The algorithm at a high level uses the following registers per
pixel that are passed on to the next step: the current depth of the
fragment we are processing cDepthP (initialized to the depth of
the clipping plane C); the final color of the first fragment that
will not be trimmed: color (initialized to 0, this variable is also
used as a lock flag); the cIndexP that is the index initially at
the clipping plane and then after each processed fragment at
the current frame; the rIndexP that is the index in the context
of the reference frame initially at the clipping plane and then
after each processed fragment; the bit vector rPC (reference
frame partitioning characterization vector) that stores the inte-
rior/exterior characterization of the areas between fragments of
the reference frame (computed for each reference frame only);
the rCount is the fragment index for the fragment classification
bit vector of the reference frame and the local registers CLb,
CLa that maintain the characterization of the points before and
after the fragments in the current frame. The algorithm is car-
ried out in two steps:

1. IndexClassificationDynamic - (Algorithm 3)
2. TrimRenderDynamic - (Algorithm 4)

IndexClassificationDynamic() is invoked only once and deter-
mines the indices of the clipping plane at the reference and the
current frames.

Algorithm 3 IndexClassificationDynamic
/* compute indices using ADD blending on [cIndexP, rIndexP] */

1: [cIndexP, rIndexP]← [0, 0]
2: for each fragment f : depth(f) ≤ Dp do
3: w f ← (f is front facing) ? 1 : −1
4: cIndexP← (f rameClass > 0) ? w f : 0
5: rIndexP← (f rameClass , 1) ? w f : 0
6: end for
/* classify the point as interior or exterior by applying the dynamic rule
on the point index */

1: cCharP← dynamic rule(cIndexP, rIndexP, rCharP)
2: if current frame == reference frame then
3: rCharP← cCharP
4: rIndexP← cIndexP
5: end if

During TrimRenderDynamic, we process one layer at a time,
until we find the first fragment that should be rendered. Each
step of the TrimRenderDynamic algorithm corresponds to ei-
ther a separate shader invocation (multi-pass peeling) or pro-
cessing the next fragment in the sorted fragment list (FreePipe
or Linked-Lists).

5.3. Capping and CSG Operations
We have implemented capping at no extra cost by subtracting a
capping box from our object (see CSG operations below) or by
simulating the result of a front facing plane that has extended
the exterior towards the capping plane (see Section 4). This
will clip and cap the target object. We can render this using
the algorithms described in the previous sections by setting the

Algorithm 4 TrimRenderDynamic
/* continue until we find the first non trimmed boundary fragment */

1: cDepthP← depth(C)
2: while color , 0 do
3: obtain the next fragment f : depth(f) > cDepthP
4: cDepthP← depth(f)
5: w f ← (f is front facing) ? 1 : −1
6: if f rameClass , 1 then
7: rCharP← rBC[++rCount]
8: rIndexP← rIndexP + w f

9: end if
10: if f rameClass > 0 then
11: cIndexP← cIndexP + w f

12: CLb ← cCharP
13: CLa ← dynamic rule(cIndexP, rIndexP, rCharP)
14: cCharP← CLa

15: if CLa , CLb then
16: color ← color(f)
17: end if
18: end if
19: end while

clipping plane outside the object since no additional clipping
needs to be performed in this case.

Constructive solid geometry can be supported, allowing a
modeler to create a complex surface by using Boolean operators
even between complicated self-crossing objects. If rBCA and
rBCB are the reference partitioning characterization bit vectors
of manifolds A and B respectively, then union, intersection and
difference can be implemented by simply performing bitwise
operations on these vectors to compute the current point char-
acterization and fragment trimming of the resulting CSG object.
In this case, index and dynamic rule computations for each frag-
ment of the current or the reference frame are not needed, thus
speeding up the trimming of the CSG operation result.

The major drawback of the multi-pass version of the algo-
rithms is that the fragment layers with depth equal to the as-
sociated depth from the previous pass are discarded and so not
peeled. We have employed the technique of [27] that correctly
resolves this limitation by using one more extra geometry pass
in the expense of performance.

6. Implementation and Results

To demonstrate our technique, we have applied the rendering
algorithms to a user controllable animation setting using both
static and dynamic rules. We have used two types of concur-
rent local deformation operations: local influence deformations
in conjunction with Laplacian smoothing and control point
movement of NURB surfaces combined with mesh subdivision.
The animation starts with an orientable self-crossing manifold
whose areas are classified and trimmed using any static rule. At
each step the user applies a sequence of concurrent disjoint de-
formations. The user may select different rules for each set of
concurrent deformations. We have implemented a GPU-based
linear space warp deformation tool to offer users the capability
of creating arbitrary animation sequences. This tool works the

10

same way a magnet does; it attracts many vertices at each frame
forcing the surface to deform smoothly. Vertices other than the
selected vertices are affected within a geodesic distance range.
An angle-weighted estimation process computes the attenuated
deformation at each vertex. When working with non-dense ge-
ometry, it can become difficult to apply extreme stretches to the
vertices without causing nasty lumps and creases on the model
surface. To correct this effect, we have implemented iterative
Laplacian smoothing and weighted vertex normal recomputa-
tion as separate GPU steps performed after the deformation
process. Alternatively, for Bspline or NURB-based meshes the
user may edit the control polygon and adjust the subdivision to
derive a set of concurrent deformations.

Figure 12: Rendering of the trim using clipping after applying several sets of
deformations.

We have implemented interior/exterior point classification
and rendering using the algorithms presented in Section 5. The
implementation is based on OpenGL 4.2 using framebuffer ob-
jects with high precision 8bit integer, 32bit floating internal tex-
ture formats and 32bit floating point depth buffer precision.

All experiments were carried out on a commodity desktop
with Intel Core i7-870 2.93GHz, 4GB DDR3 memory and
NVIDIA GeForce GTX 480 graphics hardware. The visual re-
sults demonstrated by the figures and the videos use resolution
of 1024 × 768 pixels which yields reasonably high quality re-
sults. We have implemented classification, trimming and ren-
dering in conjunction with clipping and capping.

Figure 12 illustrates the result of rendering a self-trimmed
surface that has undergone a series of deformations. In this
case, the result is the same using either the static alternating
border rule or the dynamic confluent deformation rule. Yellow
visualizes front facing geometry whereas blue visualizes back
facing geometry. The snapshot in the center uses clipping for
inspecting the interior of this complex self-crossing manifold.
Figure 14 illustrates the result of applying several deformations
on the NURB surface (a) by moving the control points. The
unintuitive hole and bump that are introduced when rendering
the trim using the static rule (d,f), are eliminated through the
use of the dynamic rule (e,g). The unintuitive hole is created
due to the fact that the extended positive surface meets a pre-
viously negative area that is not part of the trim before the de-
formation. The unintuitive bump is created due to the fact that
the extruded hole meets a previously internal highly positive
index area that is not part of the trim before the deformation.
For a better visual understanding of the unintuitive holes the
reader is referred to the supplementary material (see also http:
//www.cs.uoi.gr/~fudos/trimming.html). Figure 15 il-
lustrates the result of using capping (c) for inspecting the inte-
rior of model (a). Here we use a striped texture for rendering the

capped part. Figure 16 illustrates CSG operations between two

Armadillo

Cube

Dino

Cube

Horse

Cubes

Self trimming

deformation

-

U

U

-

Figure 13: Rendering a deformed horse model combined with several other
complex object parts with CSG operations.

copies of a highly deformed sphere. Finally, Figure 13 demon-
strates the combination of deformed horse (where the original
surface has been pushed through the object to create the SPM
logo) with several other objects to render a horse-armadillo with
dinosaur tail. The resulting object has around 500k faces pro-
ducing 2 million fragments and is being rendered at 20-100 fps
depending on the method used. More visual results are pre-
sented in the supplementary material (videos) of this paper.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 14: (a) The original NURB surface. (b and c) After applying a set
of disjoint deformations. (d) Rendering the result of one more deformation
with the static rule, where the upper extrusion is deformed so as to cross an
extended hole (observe the unintuitive hole in the upper part) and (e) the same
using the dynamic rule (no hole is present in the upper part). (f) Rendering the
trim with the static rule after one more hole is created at the bottom, observe
the unintuitive bump at the bottom and (g) the same with the dynamic rule (no
bump is present). (h) g with clipping.

Table 2 presents a comparative performance evaluation of the
proposed algorithms for in/out classification and index compu-
tation without trimming for models with different characteris-
tics. For all peeling methods, we provide the resulting frames
per second and the number of passes needed for point classifi-
cation. Two pass performs very well as compared to all other
methods including the Linked-Lists and the FreePipe. We ob-
serve that the linked lists approach that creates linked lists of all
fragments per pixel yields poor results in terms of efficiency be-
cause of extensive memory access contention. Thus, the linked
list implementation depends a lot on the number of the gener-

11

http://www.cs.uoi.gr/~fudos/trimming.html
http://www.cs.uoi.gr/~fudos/trimming.html

Table 2: FPS, number of passes and memory needed using the static rule without trimming.

Name

Vertices Faces Fragments Fps Passes Fps Passes Fps Passes MB Fps Passes Fps Passes Fps Passes MB Fps Passes MB Fps Passes MB Fps Passes MB Fps Passes MB Fps Passes

Homer 5103 10202 0.991M 510 212 7 121 16 490 203 5 113 9 940 575 90 111 20,34 895 1355

Sphere 7478 14952 0.897M 500 263 6 180 10 465 240 4 162 6 1055 620 54 123 19,26 990 1518

Deformed

sphere
7478 14952 0.933M 515 219 7 135 14 485 194 5 125 8 965 608 78 115 19,67 905 1465

Deformed

Nurbs
23807 47557 2.57M 330 149 7 88 14 300 120 5 76 8 520 312 78 47 38,4 494 824

Armadillo 172974 345944 0.8M 213 51 9 31 16 245 73 6 51 9 273 350 90 30 18,2 265 461

Dragon 437645 871414 1.3M 121 23 12 12 22 162 38 7 22 12 198 258 126 38 23,83 196 286

Average All

Dynamic

2 passes

9,752

Static Rules

All

2 passes

7,5

Size

Model

Best Average Worst All

FreePipe Linked Lists

All

1

Resolution 1024x768

1

F2B

21,75

All

2 1

Standard

2 1

WorstBest

Dual

31,5

 without

(a) (b) (c)

Figure 15: Rendering the deformed self-trimmed surface of (a) using (b) clip-
ping and (c) capping.

Figure 16: (a) Object A. (b) Object B. (c) Rendering A ∪ B, (d) A ∩ B and (e)
B − A.

ated fragments. The FreePipe based technique achieves reason-
ably good performance in the expense of increased memory re-
quirements. Moreover, FreePipe scales better that Linked-Lists
with respect to resolution increase.

Table 3 presents performance results for rendering the trim
using our technique with (a) multi-pass depth peeling (b)
FreePipe peeling and (c) peeling using Linked Lists on a NURB
surface with three tessellation levels, a deformed self-crossing
sphere and several non self-crossing models.

In the Homer, Armadillo and Dragon models, static depth
peeling stops after extracting the first layer (using two geometry
passes) since these are non self-crossing. On the other hand, the
multi-pass algorithm on self-trimmed models depends on their
maximum depth complexity since peeling is needed until all
pixels find a fragment with alternating in/out classification on
its two sides. For the NURBS and the deformed sphere three
to five rendering passes are required. For the dynamic case,
we choose the worst case scenario using as current and refer-
ence model the same model, leading at poor performance due to
the large number of layers processed. The FreePipe technique
outperforms static multi-pass peeling since only one geometry

pass is needed to store the entire fragment array. Furthermore,
the overhead for the dynamic trimming is considerably smaller
(around 50%) as compared to the overhead for the multi-pass
peeling (> 60%). Finally, the limitations of the Linked-Lists
algorithm discussed in Table 2, hold for the trimming version
as well.

7. Conclusions and Future Work

We have explored semantics for classifying the interior of self-
crossing manifolds and have introduced algorithms for effi-
ciently rendering the resulting trimmed boundary on the GPU.
This scheme can be used for rendering deformation animations
of self-crossing surfaces. Another well fitted application is to
preview the interior of solids using capping prior to performing
free form editing. The fast interior and boundary detection and
rendering have been extended to CSG originated results among
two or more self-crossing manifolds.

Fast collision detection in complex scenes may be realized
using the techniques presented in this paper. The algorithms in
this paper may be utilized for voxelizing the interior and then
produce an actual mesh for the STS. The semantics of the dy-
namic rules may be extended to capture non dijoint concurrent
deformations.

References

[1] Louis Bavoil and Kevin Myers. Order Independent Transparency with
Dual Depth Peeling, 2008.

[2] David Eppstein and Elena Mumford. Self-overlapping curves revisited. In
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’09, pages 160–169, Philadelphia, PA, USA, 2009.
Society for Industrial and Applied Mathematics.

[3] D. Epstein, F. Jansen, and Rossignac J. Z-buffer rendering from csg: The
trickle algorithm. IBM Research Report, RC15182, 1989.

[4] Cass Everitt. Interactive Order-Independent Transparency, Tech. Report,
Nvidia Corporation, 2001.

[5] Sudipto Guha, Shankar Krishnan, Kamesh Munagala, and Suresh
Venkatasubramanian. Application of the two-sided depth test to CSG ren-
dering. Proceedings of the 2003 symposium on Interactive 3D graphics -
SI3D ’03, page 177, 2003.

[6] John Hable and Jarek Rossignac. Blister: Gpu-based rendering of boolean
combinations of free-form triangulated shapes. ACM Trans. Graph.,
24:1024–1031, July 2005.

[7] John Hable and Jarek Rossignac. CST: constructive solid trimming for
rendering BReps and CSG. IEEE transactions on visualization and com-
puter graphics, 13(5):1004–14, 2007.

12

Table 3: Performance results for rendering a self-trimmed surface using static and dynamic rules.

10

20

40

80

160

320

Nurbs LOD1 Nurbs LOD2 Nurbs LOD3 Homer Deformed Sphere Armadillo Dragon

3.8K/1.78M/(9,29) 15.4K/2.6M/(9,29) 47.5K/2.57M/(9,29) 10.2K/0.933M/(3,29) 14.95K/0.991M/(7,25) 345.9K/0.8M/(3,29) 871.4K/1.3M/(3,41)

fp
s

(l
o

g
2
 s

ca
le

)

Trimming performance with static and dynamic rules
static free pipe static linked lists static depth peeling dynamic free pipe dynamic linked lists dynamic depth peeling

Facets/Fragments/

Layers(Static,Dynamic)

[8] Jeff Alan Heisserman. Generative geometric design and boundary solid
grammars. PhD thesis, Pittsburgh, PA, USA, 1992. UMI Order No.
GAX92-16022.

[9] Frederik W. Jansen. Depth-order point classification techniques for csg
display algorithms. ACM Trans. Graph., 10:40–70, January 1991.

[10] Anil Kaul and Jarek Rossignac. Solid-interpolating deformations: Con-
struction and animation of pips. Computers & Graphics, 16(1):107–115,
1992.

[11] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Efficient
depth peeling via bucket sort. Proceedings of the 1st ACM conference on
High Performance Graphics - HPG ’09, page 51, 2009.

[12] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu. Freepipe:
a programmable parallel rendering architecture for efficient multi-
fragment effects. In Proceedings of the 2010 ACM SIGGRAPH sympo-
sium on Interactive 3D Graphics and Games, I3D ’10, pages 75–82, New
York, NY, USA, 2010. ACM.

[13] Ignacio Llamas, Byungmoon Kim, Joshua Gargus, Jarek Rossignac, and
Chris D. Shaw. Twister: a space-warp operator for the two-handed editing
of 3d shapes. ACM Trans. Graph., 22(3):663–668, July 2003.

[14] Abraham Mammen. Transparency and antialiasing algorithms imple-
mented with the virtual pixel maps technique. IEEE Comput. Graph.
Appl., 9:43–55, July 1989.

[15] Marilena Maule, Joo L.D. Comba, Rafael P. Torchelsen, and Rui Bastos.
A survey of raster-based transparency techniques. Computers & Graph-
ics, 35(6):1023 – 1034, 2011.

[16] James McCann and Nancy Pollard. Local layering. ACM Trans. Graph.,
28:84:1–84:7, July 2009.

[17] Houman Meshkin. Sort-independent alpha blending. In Game Developers
Conference 2007, 2007.

[18] Uddipan Mukherjee, M. Gopi, and Jarek Rossignac. Immersion and
embedding of self-crossing loops. In Proceedings of the Eighth Euro-
graphics Symposium on Sketch-Based Interfaces and Modeling, SBIM
’11, pages 31–38, New York, NY, USA, 2011. ACM.

[19] T. M. Murali and Thomas A. Funkhouser. Consistent solid and bound-
ary representations from arbitrary polygonal data. In Proceedings of the
1997 symposium on Interactive 3D graphics, I3D ’97, pages 155–ff., New
York, NY, USA, 1997. ACM.

[20] Aristides A.G. Requicha and Herbert B. Voelcker. Boolean operations in
solid modelling: Boundary evaluation and merging algorithms. 1984.

[21] J. Rossignac. Ordered boolean list (obl): Reducing the footprint for eval-
uating boolean expressions. Visualization and Computer Graphics, IEEE
Transactions on, 17(9):1337 –1351, sept. 2011.

[22] J R Rossignac and A A G Requicha. Offsetting operations in solid mod-
elling. Comput. Aided Geom. Des., 3:129–148, August 1986.

[23] Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider. Interactive
inspection of solids: cross-sections and interferences. SIGGRAPH Com-
put. Graph., 26:353–360, July 1992.

[24] Jarek R. Rossignac and Maarten van Emmerik. Hidden contours on a
frame-buffer . In P F Lister, editor, Eurographics Workshop on Graphics
Hardware, pages 188–203, Cambridge, UK, 1992. Eurographics Associ-
ation.

[25] Jaroslaw R. Rossignac and Herbert B. Voelcker. Active zones in csg for
accelerating boundary evaluation, redundancy elimination, interference
detection, and shading algorithms. ACM Trans. Graph., 8:51–87, Novem-
ber 1988.

[26] R.B. Tilove and A.A.G. Requicha. Closure of boolean operations on ge-
ometric entities. Computer-Aided Design, 12(5):219 – 220, 1980.

[27] Andreas Vasilakis and Ioannis Fudos. Z-fighting aware Depth Peeling.
SIGGRAPH ’11: ACM SIGGRAPH 2011 Posters, 2011.

[28] H. Voelcker, A. Requicha, E. Hartquist, W. Fisher, J. Metzger, R. Tilove,
N. Birrell, W. Hunt, G. Armstrong, T. Check, R. Moote, and J. Mc-
Sweeney. The padl-1.0/2 system for defining and displaying solid objects.
In Proceedings of the 5th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’78, pages 257–263, New York, NY,
USA, 1978. ACM.

[29] Yajun Wang, Jiaping Wang, Nicolas Holzschuch, Kartic Subr, Jun-
Hai Yong, and Baining Guo. Real-time rendering of heterogeneous
translucent objects with arbitrary shapes. Computer Graphics Forum,
29(2):497–506, 2010.

[30] Jason C. Yang, Justin Hensley, Holger Grn, and Nicolas Thibieroz. Real-
time concurrent linked list construction on the gpu. Computer Graphics
Forum, 29(4):1297–1304, 2010.

[31] Hanli Zhao, Charlie Wang, Yong Chen, and Xiaogang Jin. Parallel and
efficient boolean on polygonal solids. The Visual Computer, 27:507–517,
2011. 10.1007/s00371-011-0571-1.

13

	Introduction
	Background and Problem Definition
	Prior Art
	Revisiting Interior Exterior Classification Rules
	Static Rules
	Dynamic Rules
	Properties Characterizing the Behavior of Dynamic Rules
	Constructive Rule
	Confluent Deformation Rule
	Homogeneous Confluent Deformation Rule

	The Rendering Algorithm
	Rendering using Static Rules
	Rendering using Dynamic Rules
	Capping and CSG Operations

	Implementation and Results
	Conclusions and Future Work

