Z-Fighting aware Depth Peeling

Andreas A. Vasilakis and Ioannis Fudos

{abasilak, fudos}@cs.uoi.gr

Dept. of Computer Science, University of Ioannina, Greece

1. Abstract

We introduce a methodology for handling Z-fighting in depth peeling techniques. Our method is compatible with commodity graphics hardware. We quantitatively and qualitatively compare the resulting depth peeling Z-aware variants with other depth peeling techniques that have been presented in the literature with respect to performance, robustness and scope. Finally, we provide visual results for a number of applications such as transparency and translucency and a demonstration video.

2. Depth Peeling

- An efficient process of capturing the entire topological and geometric information of a 3D scene peeling off one or more layers per pass.
- Applications: Transparency, Volume rendering and tests, CSG, Trimming, Collision detection
- Classification based on the peeling layers/pass:
 1. One layer: O(n)
 2. K layers: O(n/k), extra memory, primitive pre-sorting
 4. Stencil Routed A-Buffer (SRAB) [3]: MSAA not supported
- None of these methods can correctly peel all fragments due to Z-fighting.

3. Z-fighting

- Two or more primitives have the same z-values.
- Manifests itself through:
 1. intersecting surfaces that result in intersecting triangles that belong to the same or different objects
 2. overlapping surfaces

4. Proposed Methods

- Need one extra rendering pass
- Compatible with commodity graphics hardware

F2B_ZF: Extending F2B

Algorithm

1. **using max blending**
 (a) If all fragments at this depth have been peeled extract next depth layer else stay at this layer.
 (b) Extract the fragment with the largest ID [4]

2. **using add/max blending**
 From the remaining, not peeled z-fighting fragments:
 (a) Calculate the sum of them
 (b) Find which of them has the largest ID.

F2BKB_ZF: Combining F2B with KB

- Approximate method
- Faster for scenes with serious z-fighting artifacts

Algorithm

1. Extract next depth layer using the F2B.
2. Extract k fragments located at the current depth layer using a variation of KB.

5. Results

Following tables show a comparison in terms of peeling accuracy, performance and memory storage of the F2B, KB and SRAB methods and both of our proposed alternatives for a scene consisting of [1, 4, 8, 12] Bunnies (69,451 triangles) at a 1024×768 viewport on an nVidia Gefore GTX 480.

6. Future Work

The idea can be easily extended to other popular depth peeling techniques such as:

- **Dual depth peeling** [5]
- **Bucket peeling** [7]
- **Multi K-buffer** [6]

7. References

8. Software