
Accelerating k+-buffer using Efficient Fragment Culling
Andreas A. Vasilakis and Georgios Papaioannou

{abasilak, gepap}@aueb.gr

Department of Informatics, Athens University of Economics & Business, Greece

Posters Sessioni3D 2015

This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the

Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding

Program: ARISTEIA II - GLIDE (grant no.3712).

Acknowledgements

Figure 3. Diagram of extending k+-

buffer pipeline. Each box represents

a shader program.

Figure 2. The fragment occupancy

bitmask construction process of a

column of a 4-buffer (highlighted with

blue at top-right), when applied to the

dragon model. Fragments with depth

larger than the k-th fragment (red-

colored line) are efficiently discarded.

• Performs early-z culling with ka-th fragment per pixel, nearest largest to the actual k-th (ka ≥ k)

1. Depth range is divided into B uniform consecutive subintervals [4].

2. Occupancy bitmask, indicates the presence of fragments in each subinterval [4].

3. Counts the number of 1s in bitmask until you reach k value (𝑂(𝑘) time).

4. Efficiently discards fragments with larger depth value than the ka-th fragment.

• {depthMIN, depthMAX} ← RenderBoundingBox (); [BLENDING or ATOMIC]

• occupancyMap ← RenderScene (depthMIN, depthMAX); [BLENDING or ATOMIC]

• depthk ← FullScreenQuad (depthMIN, depthMAX, occupancyMap, k);

• k+-buffer ← RenderScene (k); [DEPTH_TEST(LEQUAL,depthk)]

• Final Image ← FullScreenQuad (k+-buffer);

Algorithm

4

3

2

1

5

Abstract. Visibility determination is a standard stage in the pipeline of numerous applications (from visualization to content creation tools) that

require accurate processing of out-of-order generated fragments at interactive speeds. While the hardware-accelerated A-buffer [1] is the dominant

structure for holding multiple fragments via per-pixel linked lists, k-buffer [2] is a widely-accepted approximation, able to capture the k-closest to

the viewer fragments, due to its reduced memory and computation requirements. To alleviate contention of distant fragments when rendering highly-

complex scenes, k+-buffer [3] concurrently performs culling checks to efficiently discard fragments that are farther from all currently maintained

fragments. Inspired by fragment occupancy maps [4], we introduce an efficient fragment culling mechanism for accelerating k+-buffer method.

Occupancy-based Fragment Culling Mechanism

k+-buffer Fragment Culling Mechanism [3]

1. Depends on the fragment arrival order, with no impact at the worst

case scenario of fragments arriving in descending order.

2. Requires the k+-buffer to be initially filled before it starts culling.

3. Fragment elimination is performed inside the pixel shader

(not hardware-accelerated)

• Works correctly even when fragments > 1 are routed to same bucket.

• Does not require any software modification of the actual k+-buffer.

Advantages

• Works well only when the generated per-pixel fragments 𝑛 ≫ 𝑘.

• Requires additional per pixel storage for the fragment occupancy map.

Limitations

1. The idea can be easily extended to any other k-buffer alternative.

2. Memory-friendly representation can be implemented by reusing the

occupancy buffer for storing color information of the actual k-buffer.

3. Replace bounding box with a better approximation (e.g. convex hull)

Accepted as Short Paper at EG 2015 [5]

Future Work

[1] J. C. Yang, J. Hensley, H. Grün and N. Thibieroz. 2010. Real-Time Concurrent Linked List Construction on the GPU.

Computer Graphics Forum, 29: 1297–1304.

[2] L. Bavoil, S. P. Callahan, A. Lefohn, J. L. D. Comba, and C. T. Silva. 2007. Multi-fragment effects on the GPU using the k-

buffer. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '07), pages 97-104.

[3] A. A. Vasilakis and I. Fudos. 2014. k+-buffer: fragment synchronized k-buffer. In Proceedings of the ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D ‘14), pages 143-150.

[4] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu. 2009. Efficient depth peeling via bucket sort. In Proceedings of the

Conference on High Performance Graphics (HPG ‘09), pages 51-57.

[5] A. A. Vasilakis and G. Papaioannou. 2015. Improving k-buffer methods via Occupancy Maps. In Proceedings of Eurographics

2015, Short Papers, Zurich, Switzerland, May 4-8, 2015.

References

41 2 3 5

Figure 1. Notice the
massive increase of
fragments discarded,
visualized as heatmap, of
our culling mechanism
(right) compared to its
predecessor (left) when
rendering the Hairball
model (180 layers, k = 8).

• Concurrently discards an incoming fragment that is farther from all

currently maintained fragments (guided by the max element).

Limitations

Results

Figure 4. Performance evaluation of the actual and the

modified k+-buffer (K+B) under varying k values.

Figure 4 illustrates the performance increase when the proposed fragment

clipping with d = 32 is enabled on the k+-buffer. Despite the additional

geometry passes needed, performance increases by 20% to 50%, when

rendering the hairball (2.8M, 150) and needle tree (43.2T, 100) models

(# triangles, average depth complexity) with a set of increasing k = 4,…, 64

values at 10242 resolution on an NVIDIA GeForce GTX780 Ti.

Figure 5 illustrates the transparency results of an ancient Greek temple

(123K, 8) model for different values of 𝑘 = 2,4,8,16 .

Figure 5. Transparency quality improvement by

increasing k when rendering a temple model.

k = 2 k = 4

k = 8 k = 16

Discussion


